1. Introduction

- **Task:** query-by-example spoken term detection
 - Given a spoken query, detecting whether an audio segment contains the spoken query
 - Matching of signals directly on the acoustic level without transcribing them into text.
- **Our Model:** end-to-end attention-based multi-hop
 - Supervised Learning: true labels to learn, classification problem
 - Unsupervised Learning: generating labels by teacher approach (e.g., Dynamic Time Warping)

<table>
<thead>
<tr>
<th>Supervised</th>
<th>Unsupervised</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Distance: difference between the position with the highest attention weight and the end of the query</th>
</tr>
</thead>
</table>

2. Proposed Approach

- **Query Representation (A)**
 - Input MFCC feature sequence: \(X_1, X_2, \ldots, X_T\)
 - Using LSTM encode to \(V_Q\)
- **Audio Segment Representation (B)**
 - Input MFCC feature sequence: \(X_t', X_{t+1}', \ldots, X_{T}\)
 - Using the same LSTM encode each frame \(S_1, S_2, \ldots, S_T\)
 - **Attention Mechanism:**
 \[
 a_t^i = S_t \odot V_Q \quad \text{or} \quad \text{Cosine similarity}
 \]
 - **Audio segment vector:**
 \[
 V_S = \sum_{t=1}^{T} a_t^i S_t
 \]

- **Hopping**
 - Using attention mechanism repeatedly to extract more relative information from audio segment.
- **Keyword Detection**
 - Given \(V_Q\) and \(V_S^n\) to determine result by neural network.

3. Experiments

- **Data set:** LibriSpeech
- **Training set:**
 - Query set: 500
 - Query and Audio segment pair: 70,000
- **Testing set 1:**
 - Query acoustic feature from training set
 - Query set: 30
 - Query and Audio segment pair: 1,500
- **Testing set 2:**
 - Query Acoustic feature is different.
 - Query set: 30
 - Query and Audio segment pair: 1,500
- **Testing set 3:**
 - Query keyword didn’t present in training set.
 - Query set: 100
 - Query and Audio segment pair: 10,000

Comparison Table

<table>
<thead>
<tr>
<th>Method</th>
<th>Test set 1</th>
<th>Test set 2</th>
<th>Test set 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a): DTW</td>
<td>0.6173</td>
<td>0.5778</td>
<td>0.5678</td>
</tr>
<tr>
<td>(b): 1-hop</td>
<td>0.6523</td>
<td>0.6246</td>
<td>0.5754</td>
</tr>
<tr>
<td>(c): 2-hop</td>
<td>0.6472</td>
<td>0.6430</td>
<td>0.5842</td>
</tr>
<tr>
<td>(d): 3-hop</td>
<td>0.6676</td>
<td>0.6404</td>
<td>0.5837</td>
</tr>
<tr>
<td>(e): 4-hop</td>
<td>0.6417</td>
<td>0.6476</td>
<td>0.5792</td>
</tr>
<tr>
<td>(f): (a) + (d)</td>
<td>0.6789</td>
<td>0.6430</td>
<td>0.5830</td>
</tr>
</tbody>
</table>

Unsupervised			
(e): 1-hop	0.6128	0.5893	0.5548
(g): 3-hop	0.6141	0.5964	0.5702