DISTRIBUTED JOINT TRANSMITTER DESIGN AND SELECTION USING AUGMENTED ADMM

Mykola Servetnyk and Carrson C. Fung, Institute of Electronics, National Chiao Tung University

ABSTRACT

- Goal of this work is to design of network in which multiple transmission points (TPs) co-operatively serve users.
- TPs jointly precodes shared data which aims in improving overall system rate.
- TP designs local precoder and reaches consensus with other TPs on leaked interference.
- This approach is different as it solves a design problem that involves a coupling constraint which no existing algorithm is able to solve.

PROBLEM FORMULATION AND REFORMULATION

The problem formulated maximizing sum received signal power subject to instantaneous leakage interference and the transmit power constraint. TPs activation controlled by adjusting regularization term. $\mathbf{f}^* = \mathbf{E}_{i\in Q} \sum_{i,j \in Q} \|\mathbf{H}_i^* \mathbf{F}_j^*\|^2 - \alpha \|\mathbf{F}_i^*\|^2_g$. $\max_{\mathbf{Q}} \sum_{i,j \in Q} tr\left(\mathbf{H}_i^* \mathbf{Q}_j^* \mathbf{H}_j^*\right) - \alpha \|\mathbf{F}_i^*\|_1$, s.t. $\sum_{i,j \in Q} tr\left(\mathbf{H}_i^* \mathbf{Q}_j^* \mathbf{H}_j^*\right) \leq I_{th}$, $i \in I$, $i \neq j$. Use ADMM to further problem decomposed in 3:

ADMM AUGMENTATION FOR COUPLING CONSTRAINT

PROPOSED ALGORITHM

Algorithm 1: Distributed consensus optimization using proposed ADMM.

SIMULATED ENVIRONMENT

- # of TPs/UEs $Q = 7$, $K = 21$
- # of Antennas $n_T = 4$, $n_R = 2$
- $\tau = 10^{-3}$
- σ^* $=-3$ dB
- PL exponent 3.76
- Shadowing 10 dB
- Tx antenna gain 10 dB

SYSTEM MODEL & NOTATIONS

Assume the network consists of a set of TPs. Set of users should be served by subset of TPs, known as the cooperating set.

KEY REFERENCES

CONTACT INFO & ACKNOWLEDGEMENT

Email: rushly.et084@nctu.edu.tw, c.fung@ieee.org

This work has been supported by the Ministry of Science and Technology Grants 107-2211-E-009-071, 108-2622-E-009-041 and Ministry of Education project RSC 107RSA0212.