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Sensors measure a spatially correlated unknown field Two Approaches: Reinforcement Learning vs. Optimization

REINFORCEMENT LEARNING STANDARD OPTIMIZATION
v does not rely on prior knowledge X typically requires knowledge of system
| | parameters (but robust solutions are
> no channel state information (CSI) also possible)

knowled the f f the utilit
> No Knowiedge on the torm ot the utiiity » CSI, form of the utility function (error

functi
HeHen function) and statistics of the unknown
v does not rely on strong assumptions field is known
» Markovian assumption v/ may guarantee optimality if the problem

Sensors are powered by a multi-antenna energy beacon and send their

» feedback on the utility function and is well-behaved (for Instance convex)

measurements to the sink battery level information from the previous » our problem is convex with ¢;(.) and ¢of(.)
time slot is available but not with ¢s(.)
. .ftl X does not guarantee convergence v/ may provide convergence guarantees
Energy ® % takes many iterations to converge » convergence to an optimal solution is
Beacon 27 guaranteed for ¢;(.) and ¢¢(.)
’#' g X " optimize by interacting with the system _ L _
t . . : v no online training is required
(or alternatively with a comprehensive
simulation environment) X requires a system model

: : : : : Deep Reinforcement Learning Approach
Reconstruct the unknown field with as small average distortion as possible under a > 8 APP

total power constraint at the energy beacon

» Method: Proximal Policy Optimization » The widths of the hidden layers are
Information Transfer » Reward: negative of the MSE at each adapted to the size of the sensor
time Step netWOrk.

Communications to the Sink
Example: ns=33:

Value function: NN with 3 hidden layers
of size {340,41,5}

Policy: NN with 3 hidden layers of size
{340,534,840}

» Decision variables: i) ratio of the energy
to be used to the battery level at each
sensor; ii) energy allocated to each
beamforming dictionary element at each
time step at the energy beacon

» The signal that is received by the sink from sensor / at time slot t is

' ificati ot g xperimen
p; € R : power amplification factor of sensor i at time slot t peE ents

gi € R : effective channel gain for sensor i at time slot t :
,-  varal - e Set-up for the Experiments:
y, € C  : received observations for sensor i at time slot ¢ _ _ _ _ _
wi € C - zero-mean proper white noise Random Field Model: Gaussian-Schell model (GSM) with time-varying parameters
Sensor Network: Energy beacon at (0,-1), sensors on the line at y = 0, sink at (0, 4) (meters)
Performance Criterion Aim: Estimate the unknown field values at n=233 positions on the line at y = 0
Mean-square error for reconstruction of the unknown field: MSE = £,(p,) = E[||s;: — 5:||°]
S: : zero-mean complex proper random field denoting measurements from time slot ¢ MSE vs. Power Budget MSE vs. number of sensors
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np . e : P, (W) Number of Sensors
{ej}*, : dictionary of beamforming vectors B
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RL approach successfully learns to minimize the MSE MSE depends significantly on the number of sensors
"2 T without a priori knowledge of system parameters (consistent with the fact that the unknown field becomes
1 s uncorrelated periodically)
Practical energy harvesting (EH) efficiency models are considered: %os: -
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¢1(.) : standard linear model %om . Power Allocation RL Convergence
. . . . . S * 'I\antael ong et al. . . .
$o(.) : quadratic model of XuOzcelikkaleMcKelveyViberg 2017 . i | for Communications to the Sink
¢s(.) : logistic function model of BoshkovskaNgZlatanovSchober 2015 —e—Nodel ()
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» power amplification factors p) at the sensors
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in order to .
With four 3.5 GHz cores and a Quadro K620 GPU,

» minimize the MSE over the time period of 1 <t < n L . . . . direct optimization and RL (105 iterations, utilizing
Power allocation is time varying (consistent with the time

Ny varying nature of the field correlation) GPU) takes 15 and 62 minutes, respectively.
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