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Sensors measure a spatially correlated unknown field

Application Example: Smart Agriculture

Sensors are powered by a multi-antenna energy beacon and send their
measurements to the sink

Main Aim:

Reconstruct the unknown field with as small average distortion as possible under a
total power constraint at the energy beacon

Information Transfer

Communications to the Sink

I The signal that is received by the sink from sensor i at time slot t is

y it = g i
t

√
pit
σ2
s̃ it

s̃ it + w i
t ,

s̃ it : samples of the unknown signal at sensor i at time slot t√
pit ∈ R : power amplification factor of sensor i at time slot t

g i
t ∈ R : effective channel gain for sensor i at time slot t
y it ∈ C : received observations for sensor i at time slot t
w i
t ∈ C : zero-mean proper white noise

Performance Criterion
Mean-square error for reconstruction of the unknown field: MSE = εt(pt) = E[||s t − ŝ t||2]

s t : zero-mean complex proper random field denoting measurements from time slot t
ŝ t : the linear minimum mean-square error (LMMSE) estimate
pt : [p1

t ; . . . ; pnst ] ∈ Rns×1, vector of power amplification factors

Wireless Power Transfer

Energy beacon serves ns sensors using a beamforming strategy K z t
=

∑nb
j=1 γt,je jeH

j

P i
r ,t = tr[hi

tK z t
(hi

t)
H]

E i
t = τEφ(P i

r ,t),

E i
t : energy harvested by sensor i during time slot t

K z t
: beamforming strategy at at the energy beacon at time t

hit : channel for wireless power transfer i at time slot t
φ(.) : the conversion between power received and power harvested
τE : length of energy harvesting time slot
{ej}nbj=1 : dictionary of beamforming vectors

Practical energy harvesting (EH) efficiency models are considered:

φL(.) : standard linear model
φQ(.) : quadratic model of XuOzcelikkaleMcKelveyViberg˙2017
φS(.) : logistic function model of BoshkovskaNgZlatanovSchober˙2015

0 0.5 1 1.5 2 2.5 3

Input power (mW)

0

0.2

0.4

0.6

0.8

1

1.2

O
u
tp

u
t 
p
o
w

e
r 

(m
W

)

Data - Song et al.
Model 

S
(.)

Model 
Q

(.)

Model 
L
(.)

Fit of the models to practical EH data

Problem Statement

We jointly design optimal

I beamforming strategies K z t
at the energy beacon

I power amplification factors pit at the sensors

in order to

I minimize the MSE over the time period of 1 ≤ t ≤ nt

min
pt Kz t

nt∑
t=1

εt (pt)

s.t.
t∑

k=1

τIp
i
k ≤

t∑
k=1

τEφ(tr[hi
kK zk

(hi
k)H]), ∀t,∀i “energy neutrality constraints @ sensors”

tr[K z t
] ≤ PB, ∀t, “power constraint @ energy beacon”

Two Approaches: Reinforcement Learning vs. Optimization

REINFORCEMENT LEARNING STANDARD OPTIMIZATION

X does not rely on prior knowledge

I no channel state information (CSI)

I no knowledge on the form of the utility
function

X does not rely on strong assumptions

I Markovian assumption

I feedback on the utility function and
battery level information from the previous
time slot is available

× does not guarantee convergence

× takes many iterations to converge

× X optimize by interacting with the system
(or alternatively with a comprehensive
simulation environment)

× typically requires knowledge of system
parameters (but robust solutions are
also possible)

I CSI, form of the utility function (error
function) and statistics of the unknown
field is known

X may guarantee optimality if the problem
is well-behaved (for instance convex)

I our problem is convex with φL(.) and φQ(.)
but not with φS(.)

X may provide convergence guarantees

I convergence to an optimal solution is
guaranteed for φL(.) and φQ(.)

X no online training is required

× requires a system model

Deep Reinforcement Learning Approach

I Method: Proximal Policy Optimization

I Reward: negative of the MSE at each
time step

I Decision variables: i) ratio of the energy
to be used to the battery level at each
sensor; ii) energy allocated to each
beamforming dictionary element at each
time step at the energy beacon

I The widths of the hidden layers are
adapted to the size of the sensor
network.

Example: ns =33:
Value function: NN with 3 hidden layers
of size {340,41,5}
Policy: NN with 3 hidden layers of size
{340,534,840}

Experiments

Set-up for the Experiments:
Random Field Model: Gaussian-Schell model (GSM) with time-varying parameters
Sensor Network: Energy beacon at (0,-1), sensors on the line at y = 0, sink at (0, 4) (meters)
Aim: Estimate the unknown field values at n=33 positions on the line at y = 0

MSE vs. Power Budget MSE vs. number of sensors
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RL approach successfully learns to minimize the MSE

without a priori knowledge of system parameters
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MSE depends significantly on the number of sensors

(consistent with the fact that the unknown field becomes

uncorrelated periodically)

Power Allocation
for Communications to the Sink

Power allocation is time varying (consistent with the time

varying nature of the field correlation)

RL Convergence
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With four 3.5 GHz cores and a Quadro K620 GPU,

direct optimization and RL (105 iterations, utilizing

GPU) takes 15 and 62 minutes, respectively.
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