END-TO-END PERSON SEARCH SEQUENTIALLY TRAINED ON AGGREGATED DATASET Angelique Loesch, Jaonary Rabarisoa, Romaric Audigier 2019CEA LIST, Vision and Learning Lab for Scene Analysis, France / Vision Lab, Thales SIX GTS, France

MOTIVATIONS

- In real use-case scenarios,
 - Extraction of human snippets from full scene images
 - **Re-ID depending** on the quality of a person **detector**
- **Person search** : problem considering **both detection and re-ID** tasks in a **unique framework**
 - Training dataset with annotated bounding boxes and IDs
 - **Difficult** to collect datasets with both annotation types

CONTRIBUTIONS

- A new end-to-end CNN model reaching state-of-the-art accuracy
- A study on the tradeoff between runtime and performance w.r.t. the shared backbone size
- A sequential training with aggregation of more train datasets for people detection \rightarrow Improvement of re-ID performance
 - in **intra-dataset** scenarios
 - in **cross-dataset** scenarios, of utmost importance for real use-cases

PERSON SEARCH DATASETS

- PRW dataset [4]
 - 11,8k images with 43,1k boxes (8,8k distractors)
 - 932 IDs
- CUHK-SYSU dataset [21]
 - 18,1k images with 99,8k boxes
 - 8,4k IDs

[4] L. Zheng, H. Zhang, S. Sun, M. Chandraker, and Q. Tian, "Person re-identification in the wild," in IEEE CVPR, 2017. [21] T. Xiao, H. Li, W. Ouyang, and X. Wang, "Learning deep feature representations with domain guided dropout for person reidentification," in IEEE CVPR, 2016.

{angelique.loesch, jaonary.rabarisoa, romaric.audigier}@cea.fr

KEYWORDS

Person Detection Person Search

Multi-Task Learning

or predicted

bounding boxes

PROPOSED METHOD Ground trut

- An **SSD** architecture keeping the **performance** of the **detection** task as high as possible
- the re-ID branches to reduce forward complexity.
- A triplet loss to solve the re-ID task as it is an effective way to learn representation
- A two-step sequential training to exploit all available detection data along with joint detection and re-ID annotated data:
 - Training detection branch only
 - Training re-ID branch by freezing the common layers

RESULTS **Comparison with person** search state-of-the-art > On CUHK-SYSU, **top-2** or top-3 best mAP > On PRW, **top-1** best mAP

[18] Z. He, L. Zhang, and W. Jia, "End-to-end detection and re-identification integrated net for person search," in arXiv preprint arXiv:1804.00376, 2018. [19] H. Liu, W. Shi, W. Huang, and Q. Guan, "A

discriminatively learned feature embedding based on multiloss fusion for person search," in IEEE ICASSP, 2018. [20] W. Shi, H. Liu, F. Meng, and W. Huang, "Instance enhancing loss: Deep identity-sensitive feature embedding for person search," in IEEE ICIP, 2018.

Re-identification

Cross-Dataset

A maximum number of shared layers between the detection and

	PRW		CUHK-SYSU	
			gallery size 100 / 4000	
	mAP (%)	Rank-1 (%)	mAP (%)	Rank-1 (%)
$2 (\text{ours})^{\ddagger}$	25.2	47.0	76.4 / 49.2	76.7 / 51.3
'3 (ours)‡	22.5	45.1	79.4 / 55.8	80.5 / 58.9
4 (ours) [‡]	12.3	27.3	76.7 / 53.3	77.8 / 56.0
ao2016 [14]	-	-	55.7 / -	62.7 / 42.5
[+OIM [15] [‡]	21.3	49.9	75.5 / 51.0	78.7 / -
AN [16]*	23.0	61.8	77.2 / 55.0	80.7 / -
en 2018 [17]	-	-	78.8 / -	80.9 / -
[-Net [18]	-	-	79.5 / 53.5	81.5 / -
u2018 [19]*	21.0	63.1	79.8 / -	79.9 / -
I+IEL [20]*	24.3	69.5	79.4 / 58.0	79.7 / -
PSM [11] [‡]	24.2	53.1	77.9 / 54.0	81.2 / -
shart goor a reported for DDW protocol at				

Highest score reported for PRW protocol at

*: 3 bounding boxes / image; [‡]: 5 bounding boxes / image. Mean average precision (mAP) (%) and matching rate at rank-1 (Rank-1) (%)

EXPERIMENTS

on re-ID performance

	PRW		CUHK-SYSU	
			gallery size 100 / 4000	
	mAP (%)	Rank-1 (%)	mAP (%)	Rank-1 (%)
Disj.‡	13.3	32.3	72.1 / 50.1	74.1 / 53.3
$J2 (\text{ours})^{\ddagger}$	25.2	47.0	76.4 / 49.2	76.7 / 51.3
$J3 (ours)^{\ddagger}$	22.5	45.1	79.4 / 55.8	80.5 / 58.9
$J4 (\text{ours})^{\ddagger}$	12.3	27.3	76.7 / 53.3	77.8 / 56.0

Highest score reported for PRW protocol at *: 3 bounding boxes / image; [‡]: 5 bounding boxes / image.

mAP (%) and Rank-1 (%) on PRW and CUHK-SYSU

time on both datasets for medium-sized backbone.

Boosting shared feature map efficiency for cross-dataset scenarios for intra-dataset scenarios

	gallery size 100 / 4000			
	mAP (%)	Rank-1 (%)	mAP GT (%)	Rank-1 GT (%)
$J2_{\rm c}$	71.4 / 43.6	71.6 / 45.5	78.6 / 50.3	78.0 / 52.3
J2	76.4 / 49.2	76.7 / 51.3	81.9 / 54.9	81.0 / 56.5
$J3_{\rm c}$	75.5 / 48.1	76.4 / 50.3	81.2 / 54.2	80.9 / 56.5
J3	79.4 / 55.8	80.5 / 58.9	84.4 / 60.9	84.0 / 63.1
J4 _c	62.9 / 33.3	62.3 / 33.8	68.5 / 37.1	67.1 / 37.2
J4	76.7 / 53.3	77.8 / 56.0	81.6 / 57.1	81.3 / 58.8

(*left*) mAP and Rank-1 on CUHK-SYSU for our joint models trained on CUHK-SYSU only, or boosted by pedestrian dataset aggregation. (*right*) Ground truth boxes instead of predicted boxes Greater improvement for longer backbone

- \succ Up to +20 p.p. mAP

CONCLUSION

Influence of shared backbone size size on computation time

Best trade-off accuracy/ running

		#im.	computation time (ms)	
	$\frac{\ddot{b}atch}{b}$		5 p. / im.	20 p. / im.
	Disj.	1	17.0	7.4
		4	13.6	6.6
		8	12.9	6.4
	J2	1	12.3	3.9
		4	8.3	2.7
		8	7.4	2.5
	J3	1	12.2	3.4
		4	7.8	2.4
		8	7.2	2.2
		1	11.1	2.9
	J4	4	7.1	1.9
		8	6.5	1.9

Mean computation time (ms) to detect a person and extract his/her feature

Up to 3.4 faster than disjoint architecture

	gallery size 100 / 4000		
	mAP (%)	Rank-1 (%)	
$J2_{\rm p}$	31.5 / 14.9	33.4 / 16.1	
J2 _{m-w-p}	54.4 / 29.4	55.4 / 31.9	
J3 _p	29.8 / 13.9	31.7 / 15.8	
J3 _{m-w-p}	54.6 / 28.1	56.1 / 29.7	
$J4_{\rm p}$	22.8 / 8.8	23.1/9.5	
J4 _{m-w-p}	52.5 / 27.8	53.3 / 28.8	

mAP and Rank-1 on CUHK-SYSU crossdataset for our joint models trained on PRW only, or boosted by pedestrian dataset aggregation

> A not costly yet efficient way to increase re-ID performance > 20 p.p. mAP improvement

* New end-to-end person search networks based on

 SSD architecture for detection • Triplet loss to solve re-ID Competitive re-ID results on CUHK-SYSU and PRW datasets * Aggregating pedestrian datasets during training leads to significant improvement in intra and cross-dataset Re-ID scenarios