ORCA-PARTY: An Automatic Killer Whale Sound Type Separation Toolkit Using Deep Learning

Christian Bergler
1, Manuel Schmitt1, Andreas Maier1, Rachael Xi Cheng2, Volker Barth3, Elmar Nöth1

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Erlangen, Germany
2Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
3Anthro-Media, Berlin, Germany

May 13th, 2022
INTRODUCTION
ORCA-PARTY – What it is about?
Speech perception among killer whales...

“Cocktail Party Problem”, caused by multiple vocalizing killer whales → Overlapping call type structures

Source: Killer whale images taken from FIN-PRINT [2], Copyright Jared Towers & Gary J. Sutton, Other Images, Pixabay License – taken from https://pixabay.com/ – and recreated

Friedrich-Alexander-Universität Erlangen-Nürnberg • ORCA-PARTY: An Automatic Killer Whale Sound Type Separation Toolkit Using Deep Learning • Christian Bergler

May 13th, 2022
The Killer Whale
...and the phenomenon of communication

- The Killer Whale (*Orcinus Orca*) is the largest member of the dolphin family [1] [2] [3]
- Lives in stable, family-based, and social groups of several individuals [1] [2] [4]
- Communicative behavior is based on three different types of vocalization paradigms [1] [3] [5]
 - Echolocation Clicks – Short pulses used for navigation and object localization
 - Whistles – Narrow-band signals primarily used within close-range interactions
 - Pulsed Calls – Most common type of vocalizations, subdivided into discrete, variable, and aberrant calls, showing distinct tonal properties
- Discrete Pulsed Calls (Call Types) are stereotyped and repetitive vocal activities, indicating a wide diversity of distinctive categories with significant inter- and intra-class spectral variations

Source: [3] Bergler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech, and Dialogue, 2019
Source: [4] Bergler et al., Deep Learning for Orca Call Type Identification – A Fully Unsupervised Approach, INTERSPEECH, 2019
MOTIVATION & CHALLENGES
Motivation

Killer Whale Sound Type Separation

Killer Whale Sound Type Classification
- Wide diversity of distinctive call type categories with significant inter- and intra-class spectral variations [5]
- Large-scale, data-driven, and machine-based orca call type identification is imperative to gain deeper insights into orca communication

Killer Whale Sound Type Separation
- Especially longer acoustic regions of orca communication, containing a large number of vocalization events in consecutive short time intervals
- Essential for communication analysis

→ High probability of overlapping call-specific events!

Source: [3] Bergler et al., Deep Representation Learning for Orca Call Type Classification, Text, Speech, and Dialogue, 2019
Source: [4] Bergler et al., Deep Learning for Orca Call Type Identification – A Fully Unsupervised Approach, INTERSPEECH, 2019
Challenges
Killer Whale Sound Type Separation

- Robust machine learning pipeline to process massive and noise-heavy data repositories
- Limited knowledge about entire inter-/intra killer whale call type variations
- No ground truth data of overlapping call events and the associated individual components
- Huge call type-specific datasets are required to cover as much spectral variation as possible
- Single-channel acoustic events with no information about number of speakers, sound source location, speaker-specific data material, and various recording environments/setups.

Goal: Fully-automated machine (deep) learning-based orca sound type separation, independent of speaker-, sound source location-, and recording condition-specific knowledge, not requiring human-annotated overlapping ground truth data
DATA MATERIAL
KWSTA consists of three sub-archives and is the result of applying machine (deep) learning algorithms (see ORCA-SLANG [5]) to one of the largest animal-specific data archives – The Orcheve – including ≈20,000 h underwater recordings!

- **ORCA-SLANG Call Type Data Corpus (OSDC)**
 235,369 machine-identified orca samples, unevenly distribute across 6 known call types

- **Echolocation Repository (ELRP)**
 9,382 echolocation events, machine-identified via ORCA-TYPE [3]

- **ORCA-SLANG Unknown Signal Repository (OSUR)**
 2,101 excerpts of either so far unseen/unknown orca sounds or background noise

The final KWSTA data repository includes 246,852 (∼398.1 h) unique orca events (mono, 44.1 kHz) with an average duration of ∼6.0 s
Call Type Data Corpus (CTDC)
Human-annotated dataset including 514 non-overlapping orca call type events, unequally split and categorized into 12 distinct classes [3] [6] [7] (9 killer whale call type categories, echolocation click, whistle, and noise)

Additional acoustic data collection via a 15-meter research trimaran during our fieldwork expedition along the coastal waters of northern British Columbia (2017–2019), resulting in ≈ 177.3 h (mono, 96 kHz) raw killer whale underwater recordings [1]
DATA PROCESSING
Multi-Stage Data Preprocessing Procedure [1] [6]

- Conversion to a single-channel audio file
- Resampling to 44.1 kHz
- Short-Time-Fourier-Transform (STFT) using a window-size = 4,096 samples (≈100 ms) and hop-size = 441 samples (≈10 ms) → Frequency x Time (F x T) power-spectrogram
- Decibel conversion of the F x T power-spectrogram
- Orca Detection Algorithm [6] to extract a fixed temporal context of 1.28 s (T = 128)
- Linear frequency compression (nearest neighbor, fmin = 500 Hz, fmax = 10 kHz, F = 256)
- 0/1-dB-normalization (min = 100 dB, ref = +20 dB)

→ Final Output: 256 x 128 0/1-dB-normalized spectrogram
Multi-Stage Data Generation Procedure

- Random selection of 37,101 samples from the KWSTA repository – 5,000 events per call type from the OSDC, 5,000 echolocation clicks of the ELRP, plus the entire OSUR data pool

- Spectral signal enhancement (denoising) by applying ORCA-CLEAN [6]

- Overlap a pair of spectrograms using a randomly chosen duration interval $\delta \in [0.64 \text{ s}, 1.28 \text{ s}]$

- Randomly sub-sampling a temporal context of 1.28 s ($T = 128$)

- 0/1-min/max-normalization of the 256×128-large overlapping spectrogram

- 2,000 overlapping spectral events for each of the 42 combinations (8 categories – 7 orca sound types plus a rejection class)

→ Final Output: ORCA-PARTY Overlapping Dataset (OPOD), consisting of 84,000 256×128-large, 0/1-min/max-normalized, overlapping spectral representations

METHODOLOGY
Network Architecture and Training
The Setup of ORCA-PARTY

ORCA-PARTY Architecture

- Network Input: 256×128-large, 0/1-min/max-normalized overlapping signals from the OPOD
- Network Output: 8 category-specific activated segmentation masks (7 orca sound types plus a rejection class)
- Data distribution: train – 58,800 (70 %), dev – 12,600 (15 %), test – 12,600 (15 %)
Experiments
ORCA-PARTY Experimental Setup

1st Experiment
Visual inspection and classification of the network output masks from the unseen OPOD test set, while ignoring the “unknown” class → 8,400 out of 12,600 test events

2nd Experiment
ORCA-TYPE [3] was trained on the denoised (ORCA-CLEAN [6]) human-labeled CTDC mask-specific data, with and without ORCA-PARTY (O-WP & O-BL) as additional data preprocessing step, evaluated on:
- Unseen non-overlapping CTDC test set
- Sliding window approach to iterate frame-wise over pre-segmented/-denoised excerpts $\Psi \in [10.0\,\text{s}, 30.0\,\text{s}]$ of the unlabeled DLFD → Classification hypotheses of O-WP vs. O-BL!

3rd Experiment
Model transfer to train and evaluate ORCA-PARTY on a bird species, named Monk parakeets (Myiopsitta monachus), with a total of 3,000 bird call events across 4 categories (alarm, other, contact call & noise)
RESULTS & DISCUSSION
Results
Visualization/Classification Overlapping OPOD Test & CTDC Data

- Visualizations from the unseen OPOD test set, showing the original overlapping input spectrogram, compared to the class-based separation outputs

- Applying O-WP to the unseen overlapping 8,400 OPOD test samples (16,000 classification hypotheses) results in a multi-class accuracy of ≈86.0%

- Applying O-BL as well as O-WP to the unseen non-overlapping CTDC dataset, an average classification accuracy of ≈96.0% vs. ≈94.5% (dev) and ≈94.5% vs. ≈93.0% (test) was achieved

→ O-WP almost reaches the upper classification boundary for non-overlapping signals, provided by O-BL!

ORCA-PARTY achieved auspicious results on overlapping data, besides robustly processing non-overlapping call type events!
Results
DeepAL Fieldwork Data & Monk Parakeets

- Applying O-BL vs. O-WP to frame-wise classify the entire DLFD archive results in the following overall amount of classification hypotheses:
 - $39,569$ (O-BL) vs. $51,684$ (O-WP) orca events distributed across 7 categories (increase of $\approx 30\%$)

- ORCA-PARTY, trained on overlapping monk parakeet spectrograms, proved model transferability and achieved promising results even in noisy conditions
CONCLUSION & FUTURE WORK
Conclusion & Future Work
ORCA-PARTY – Wrap up and what’s next?

Conclusion

ORCA-PARTY, is an automatic deep learning-based approach for orca sound type separation, not requiring any human-labeled overlapping ground truth data and is independent of speaker/-source information and various recording conditions.

• Additional data enhancement step

• Similar classification results were obtained for non-overlapping events

• Significant improvements were observed during the analysis of acoustic regions with high vocalization volumes, leading to $\approx 30\%$ more call identifications

• Promising initial results on various noisy bird calls

Future Work

• Future studies will evaluate performance on additional animal-related bioacoustic datasets

• Source code and audiovisual excerpts produced by ORCA-PARTY will be publicly available under [8]
Thank you for your attention!
References
References I

