Joint Masked CPC and CTC Training for ASR

Overview

Self-supervised training for ASR requires two stages:

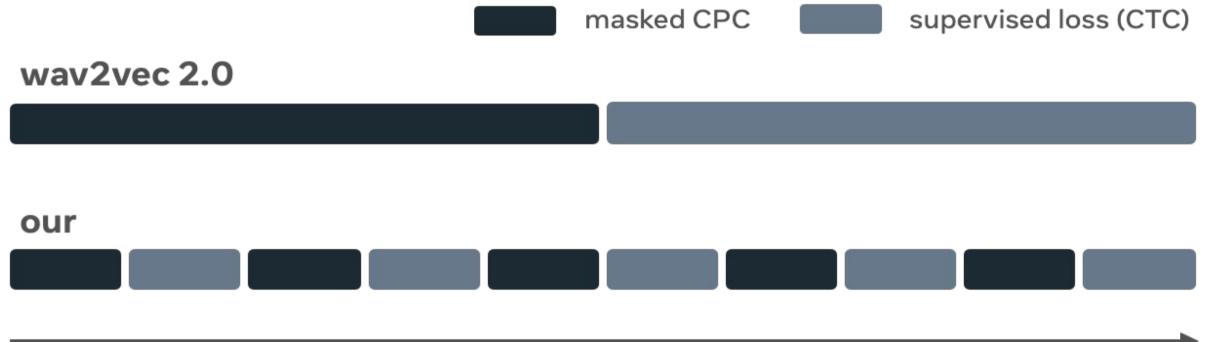
- pre-training on unlabeled data;
- fine-tuning on labeled data.

We propose **joint training**:

- alternate supervised and unsupervised losses minimization, thus directly optimize for ASR task rather than for unsupervised task. Result:
- simplified learning process that matches state-of-the-art two-stage pipeline.

Joint Training

We jointly minimize two losses, a supervised L_{s} and an unsupervised L_{μ} , by alternating between minimizing L_{g} on labeled data and minimizing L_{μ} on unlabeled data.



Training updates

<u>Model</u>: takes input raw audio x and outputs token y probabilities at time t

$oldsymbol{z} = f(oldsymbol{x})$	(1)	convolutional encoder
$ ilde{m{z}} = g(ext{mask}(m{z}))$	(2)	transformer context network
$p_{\boldsymbol{\theta}}(\boldsymbol{y} \boldsymbol{x}) = h(\tilde{\boldsymbol{z}}).$	(3)	

<u>Supervised loss</u>: Connectionist Temporal Classification (CTC).

<u>Unsupervised loss</u>: wav2vec 2.0 self-supervision loss; can be viewed as a contrastive predictive coding (CPC) loss where the task is to predict the masked encoder features.

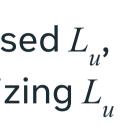
$$\mathcal{L}_{u}(\boldsymbol{\theta}, \boldsymbol{x}) = \frac{1}{T} \sum_{t} -\log \frac{s(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t})}{s(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t}) + \sum_{t'} s(\boldsymbol{z}_{t'}, \tilde{\boldsymbol{z}}_{t})} \quad (4) \qquad s(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t}) = \frac{1}{\tau} \exp(\frac{s(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t})}{s(\boldsymbol{z}_{t'}, \tilde{\boldsymbol{z}}_{t})} + \sum_{t'} s(\boldsymbol{z}_{t'}, \tilde{\boldsymbol{z}}_{t})} \quad (4)$$

<u>Alternate minimization:</u>

separate adaptive momentum optimizers are used for each of the two losses with different learning rates η_{s} and η_{y} ;

optimizers maintain their state independently, while sharing the model parameters.

Algorithm 1: Alternating minimization algorithm. **Data:** Labeled data $L = \{x, y\}$, Unlabeled data $U = \{ \boldsymbol{x} \}$ **Result:** Acoustic model p_{θ} Randomly initialize parameters of the acoustic model p_{θ} ; repeat repeat 1. Forward the model with Eq. (1) and (2) obtaining \boldsymbol{z} and $\boldsymbol{\tilde{z}}$ 2. Compute $g_u = \nabla_{\boldsymbol{\theta}} \mathcal{L}_u(\boldsymbol{\theta}, \boldsymbol{x})$ using $\boldsymbol{z}, \, \boldsymbol{\tilde{z}}$ 3. Update p_{θ} with η_u and g_u until N times for $x \in U$; 4. Forward the model for $x \in L$ with Eq. (1)-(3) obtaining $p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x})$ 5. Compute $g_s = \nabla_{\boldsymbol{\theta}} \mathcal{L}_s(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})$ using $p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})$ 6. Update p_{θ} with η_s and g_s until convergence in word error rate or maximum *iterations are reached*;



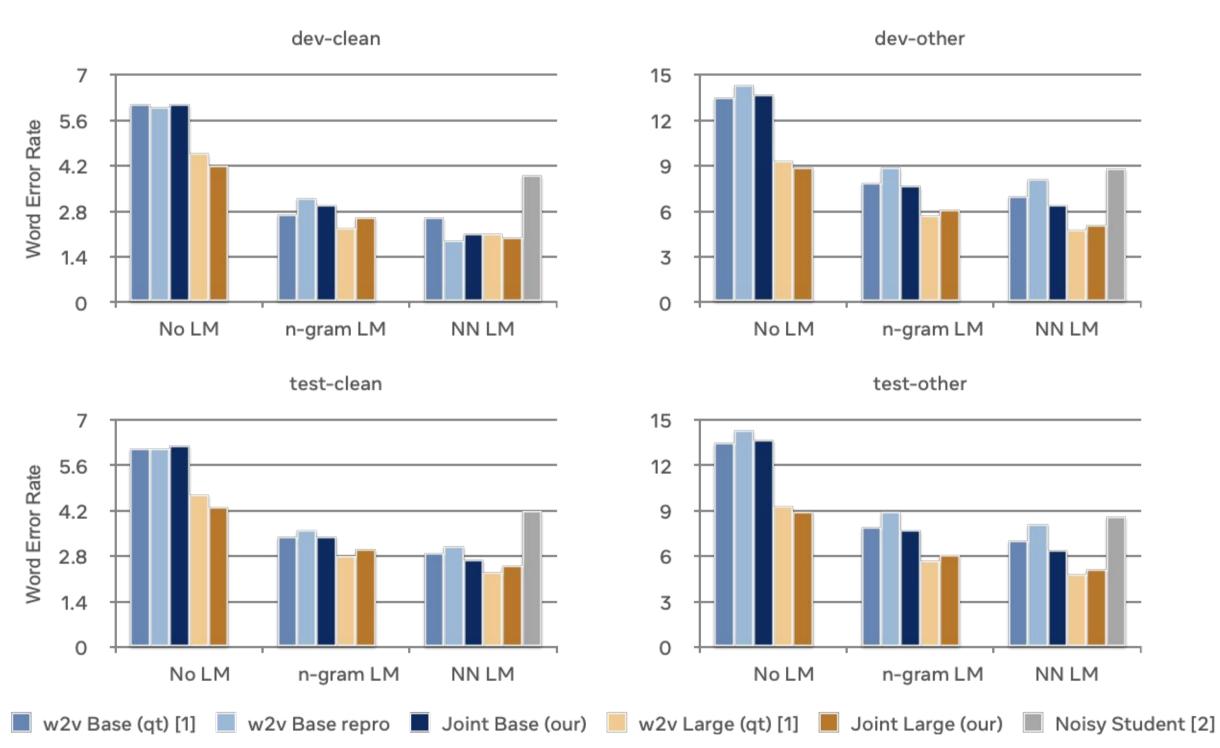
 $\left(rac{oldsymbol{z}_t\cdot ilde{oldsymbol{z}}_t}{\|oldsymbol{z}_t\|\| ilde{oldsymbol{z}}_t\|}
ight)$

Experimental Setup

- Data: i) 960h of LibriSpeech is used as unlabeled set; ii) 100h of *train-clean* LibriSpeech is used as labeled.
- Models: Base (94M) and Large (315M) wav2vec 2.0 architectures consisting of convolutional encoder, transformer context network
- **Tokens**: English alphabet.
- uses the same masking procedure as the contrastive loss
- Data augmentation in the ASR task: a variation of SpecAugment that • **Training**: 500k updates with Adam optimizer.

Results

- Joint training matches the word error rates (WER) of the wav2vec 2.0 for either model architecture (*Base* and *Large*) on both sets (*test-clean* and *test-other)*, with and without a language model (LM).
- Unlike the wav2vec 2.0 model, our model is quantization-free, operates in the continuous space and does not use any unsupervised loss penalty terms during training.



Effect of Hyperparameters on Downstream Task

- Training is not sensitive to the number L₁ to L_s updates.
- Lower L_u to L_s learning rate ratio or a single optimizer results in a higher word error rate.

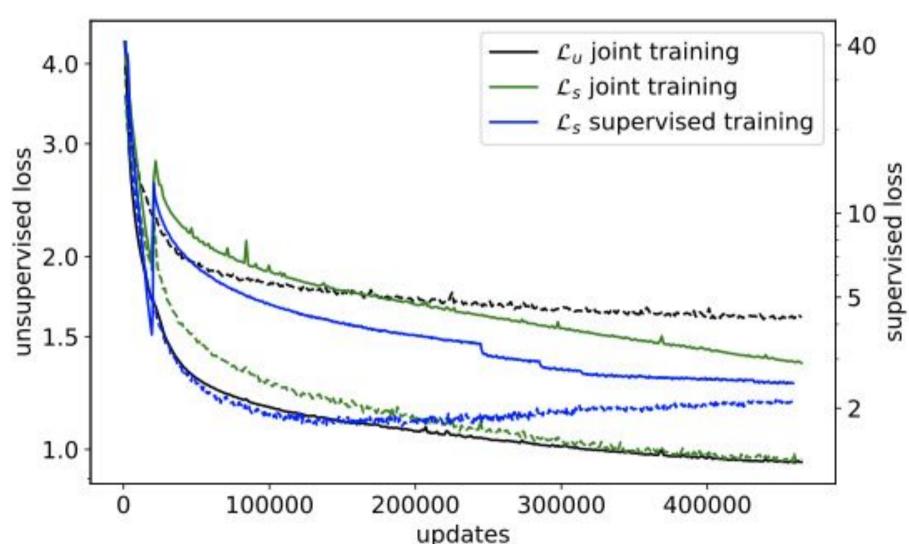
Word error rate (*dev-other*, 4-gram LM) of models with different hyperparameters compared to baseline.

Hyperparameter	Updates	LR	dev-other WER
Baseline	1:1	20:1	8.0
L_u to L_s update ratio	5:1	20:1	7.9
L_u to L_s learning rate ratio	1:1	4:1	9.0
Single optimizer	1:1	20:1	11.1

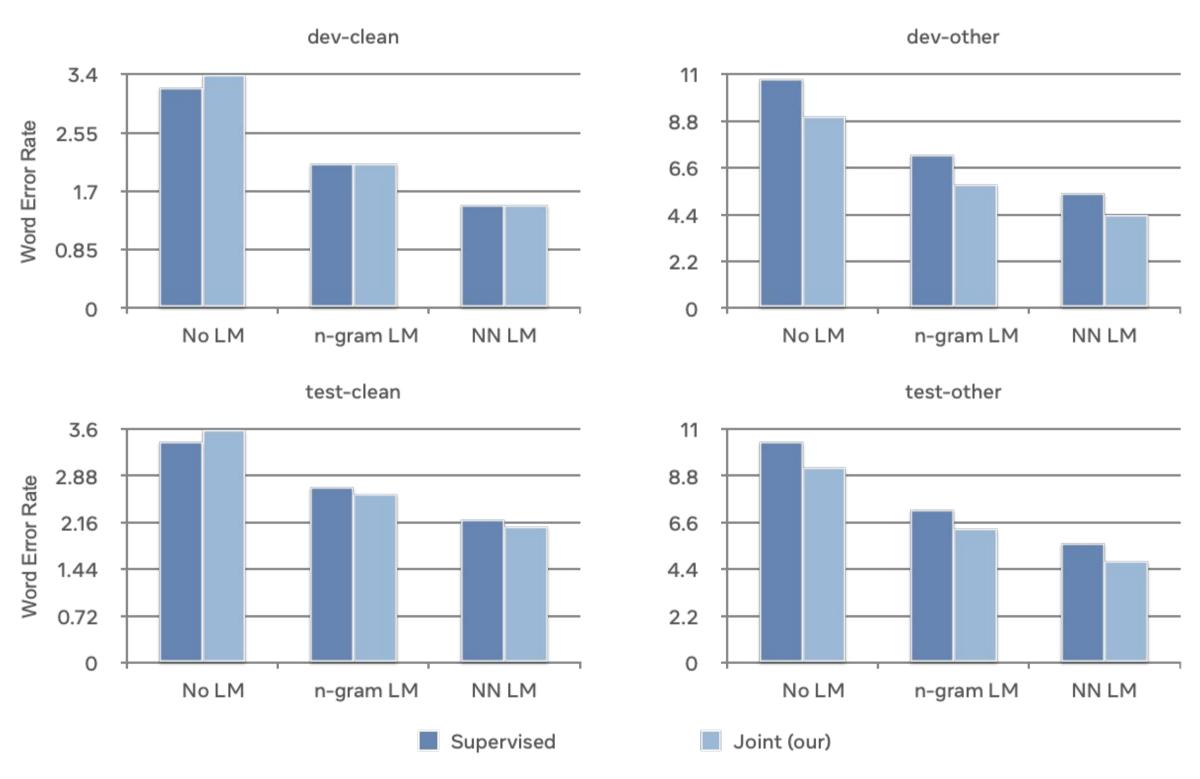
Regularization Effect on Supervised Loss

Observations suggest **regularizing** effect to the supervised loss:

Unsupervised L_{μ} and supervised L_{e} losses behaviour on the train (solid) and validation (dotted) sets for joining training (L_{y} black and L_{z} green) and supervised only training (L_{z} blue). All 960h are used with labels



lower WER compared to a supervised model (despite lower number of updates from supervised loss).



Acknowledgement

discussions regarding wav2vec 2.0.

References

[1] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli, "wav2vec 2.0: A framework for self-supervised learning of speech representations, "Advances in Neural Information Processing Systems, vol. 33, 2020.

[2] Daniel S Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng Chiu, Bo Li, Yonghui Wu, and Quoc V Le, "Improved noisy student training for automatic speech recognition, "Proc. Interspeech 2020, pp. 2817-2821, 2020.

• joint training achieves **lower** supervised loss on the **validation** and a **higher** supervised loss on the **train** compared to supervised training.

Word error rates of models trained on 960h of LibriSpeech (all 960h are used with labels).

We would like to thank Alexei Baevski and Michael Auli for helpful