Joint Masked CPC and CTC Training for ASR

Chaitanya Talnikar, Tatiana Likhomanenko, Ronan Collobert, Gabriel Synnaeve

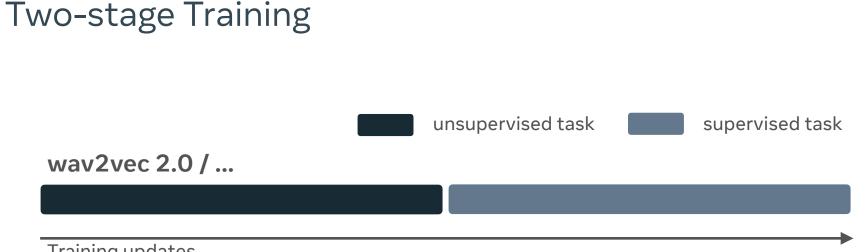
FACEBOOK AI

Agenda

- 1. Motivation
- 2. Joint training
- 3. Experimental setup
- 4. Results
- 5. Ablations
 - effect of hyperparameters on downstream task
 - regularization effect on supervised loss

Motivation

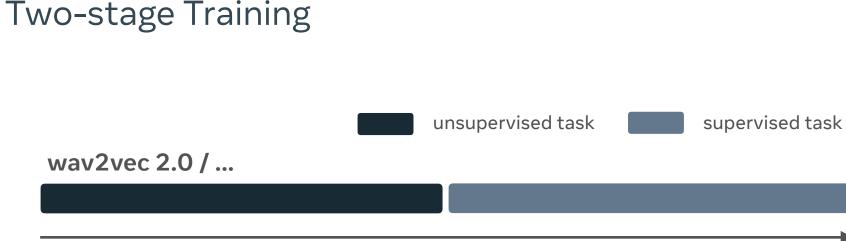
FACEBOOK AI



Training updates

Self-supervised training for ASR requires two stages

- pre-training on unlabeled data
- fine-tuning on labeled data



Training updates

Self-supervised training for ASR requires two stages

- pre-training on unlabeled data
- fine-tuning on labeled data

Two-stage training is hard to optimize for a downstream task unsupervised loss is not perfectly correlated with supervised task

pre-training on unlabeled data fine-tuning on labeled data Two-stage training is **hard to optimize** for a downstream task unsupervised loss is not perfectly correlated with supervised task

Self-supervised training for ASR requires two stages

unsupervised task

Training updates

wav2vec 2.0 / ...

Two-stage Training

propose alternate supervised and unsupervised minimization

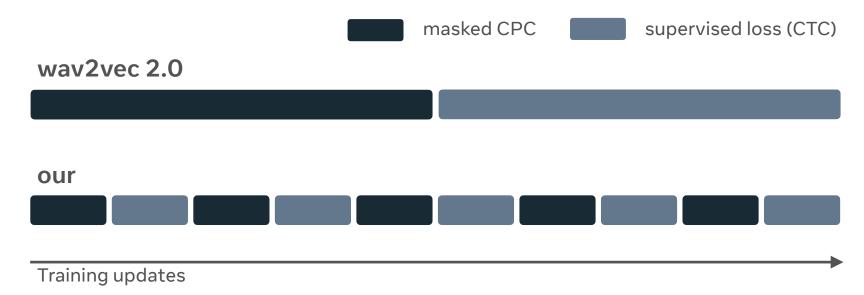
Revisit

supervised task

Joint Training

Joint Training at Glance

We jointly minimize two losses, supervised L_s and an unsupervised L_u , by alternating between minimizing L_s on labeled data and minimizing L_u on unlabeled data.



Model takes input raw audio x and outputs token y probabilities at time t

$$oldsymbol{z} = f(oldsymbol{x})$$
 (1) convolutional encoder
 $\widetilde{oldsymbol{z}} = g(\max(oldsymbol{z}))$ (2) transformer context network
 $p_{oldsymbol{ heta}}(oldsymbol{y}|oldsymbol{x}) = h(\widetilde{oldsymbol{z}}).$ (3)

Supervised and Unsupervised Losses

Supervised loss: Connectionist Temporal Classification (CTC)

- $\boldsymbol{z} = f(\boldsymbol{x}) \tag{1}$
- $\tilde{\boldsymbol{z}} = g(\text{mask}(\boldsymbol{z}))$ (2)

$$p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x}) = h(\tilde{\boldsymbol{z}}). \tag{3}$$

Supervised and Unsupervised Losses

Supervised loss: Connectionist Temporal Classification (CTC)

Unsupervised loss: wav2vec 2.0 self-supervision loss

can be viewed as a contrastive predictive coding (CPC) loss where the task is to predict the masked encoder features rather than predicting future encoder features given past encoder features

$$\mathcal{L}_{u}(\boldsymbol{\theta}, \boldsymbol{x}) = \frac{1}{T} \sum_{t} -\log \frac{s(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t})}{s(\boldsymbol{z}_{t}, \tilde{\boldsymbol{z}}_{t}) + \sum_{t'} s(\boldsymbol{z}_{t'}, \tilde{\boldsymbol{z}}_{t})} \quad (4)$$

 $s(\boldsymbol{z}_t, \tilde{\boldsymbol{z}}_t) = \frac{1}{\tau} \exp(\frac{\boldsymbol{z}_t \cdot \tilde{\boldsymbol{z}}_t}{\|\boldsymbol{z}_t\| \| \tilde{\boldsymbol{z}}_t \|})$

masked positions

non-masked positions

$$\boldsymbol{z} = f(\boldsymbol{x}) \tag{1}$$

$$\tilde{\boldsymbol{z}} = g(\text{mask}(\boldsymbol{z}))$$
 (2)

$$p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x}) = h(\tilde{\boldsymbol{z}}). \tag{3}$$

Algorithm Overview

Alternate minimization:

separate adaptive momentum optimizers are used for each of the two losses with different learning rates η_s and η_u

optimizers maintain their state independently, while sharing the model parameters $\boldsymbol{z} = f(\boldsymbol{x}) \tag{1}$

$$\tilde{\boldsymbol{z}} = g(\max(\boldsymbol{z}))$$
 (2)

$$p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x}) = h(\tilde{\boldsymbol{z}}). \tag{3}$$

Algorithm 1: Alternating minimization algorithm. **Data:** Labeled data $L = \{x, y\}$, Unlabeled data $U = \{x\}$ **Result:** Acoustic model p_{θ} Randomly initialize parameters of the acoustic model p_{θ} ; repeat repeat 1. Forward the model with Eq. (1) and (2)obtaining \boldsymbol{z} and $\boldsymbol{\tilde{z}}$ 2. Compute $g_u = \nabla_{\boldsymbol{\theta}} \mathcal{L}_u(\boldsymbol{\theta}, \boldsymbol{x})$ using $\boldsymbol{z}, \, \tilde{\boldsymbol{z}}$ 3. Update p_{θ} with η_u and g_u until N times for $x \in U$; 4. Forward the model for $x \in L$ with Eq. (1)-(3) obtaining $p_{\theta}(\boldsymbol{y}|\boldsymbol{x})$ 5. Compute $g_s = \nabla_{\boldsymbol{\theta}} \mathcal{L}_s(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})$ using $p_{\boldsymbol{\theta}}(\boldsymbol{y} | \boldsymbol{x})$ 6. Update p_{θ} with η_s and g_s until convergence in word error rate or maximum iterations are reached:

Experimental Setup

Experiments

Data:

i) 960h of LibriSpeech is used as unlabeled setii) 100h of train-clean LibriSpeech is used as labeled

Experiments

Data:

- i) 960h of LibriSpeech is used as unlabeled setii) 100h of train-clean LibriSpeech is used as labeled
- Models have wav2vec 2.0 architectures
 - Base 94M
 - Large 315M

Tokens: English alphabet

Experiments

Data:

- i) 960h of LibriSpeech is used as unlabeled set;
- ii) 100h of train-clean LibriSpeech is used as labeled.

Models have wav2vec 2.0 architectures

- Base 94M
- Large 315M

Tokens: English alphabet

Data augmentation in the ASR task:

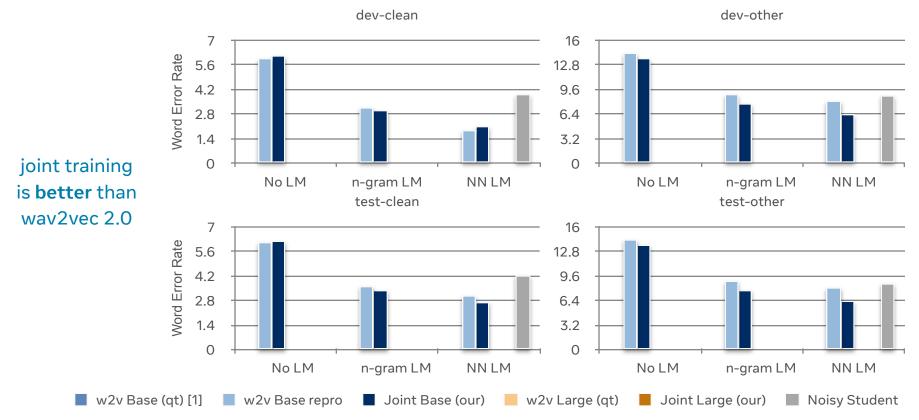
a variation of SpecAugment that uses the same masking procedure as the contrastive loss

Training: 500k updates with Adam optimizer

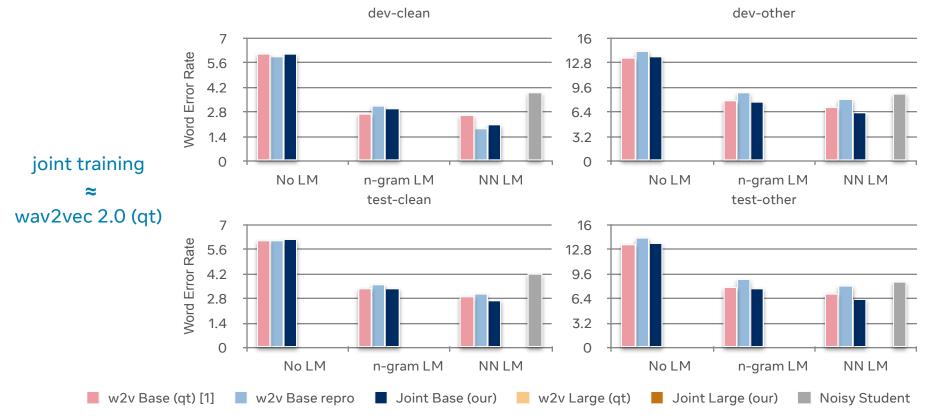
Results

FACEBOOK AI

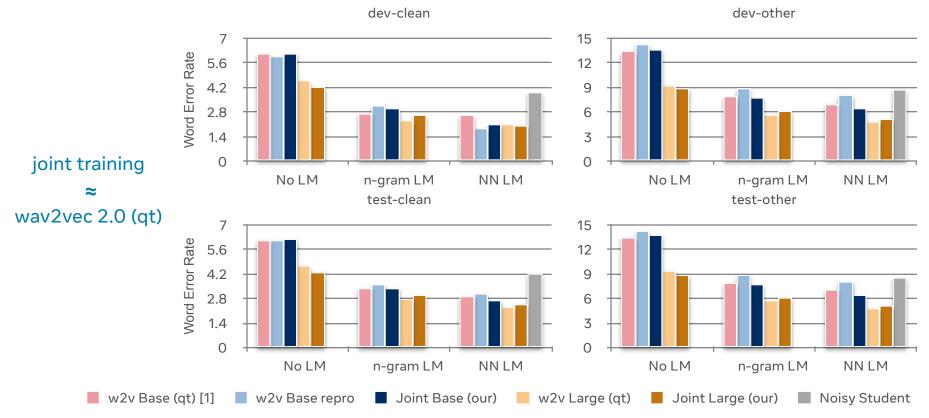
Results: Base Model (Continuous)



Results: Base Model



Results: Large Model



Results: Simpler but with the Same WER

Best wav2vec 2.0 models use

features quantization

Joint model in contrast

• quantization-free, operates in the continuous space

Results: Simpler but with the Same WER

Best wav2vec 2.0 models use

- features quantization
- unsupervised penalty terms during training

Joint model in contrast

- quantization-free, operates in the continuous space
- **does not** use any unsupervised penalty terms

Ablations

Ablation:

Effect of Hyperparameters on Downstream Tasks

• Training is not sensitive to the number of *L_u* to *L_s* updates

Hyperparameter	Updates	LR	dev-other WER
Baseline	1:1	20:1	8.0
L_u to L_s update ratio	5:1	20:1	7.9
L_u to L_s learning rate ratio	1:1	4:1	9.0
Single optimizer	1:1	20:1	11.1

Ablation:

Effect of Hyperparameters on Downstream Tasks

- Training is not sensitive to the number of *L_u* to *L_s* updates
- Lower L_u to L_s learning rate ratio or a single optimizer results in a higher WER

Hyperparameter	Updates	LR	dev-other WER
Baseline	1:1	20:1	8.0
L_u to L_s update ratio	5:1	20:1	7.9
L_u to L_s learning rate ratio	1:1	4:1	9.0
Single optimizer	1:1	20:1	11.1

Baseline model

• a supervised model trained on full labeled LibriSpeech (960h)

Baseline model

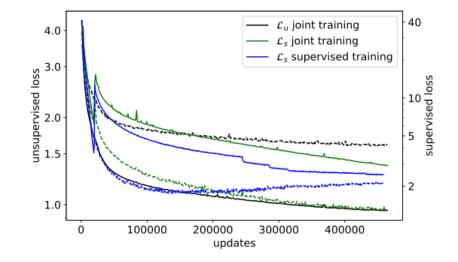
• a supervised model trained on full labeled LibriSpeech (960h)

Joint model

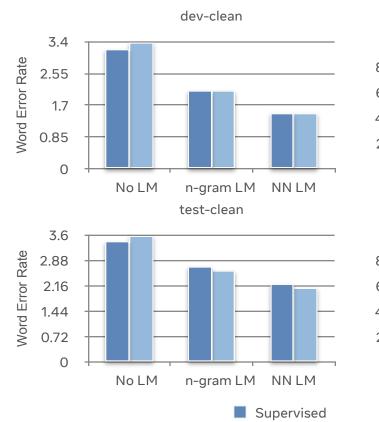
- full LibriSpeech without labels is used to compute unsupervised loss
- full LibriSpeech with labels is used to compute supervised loss

Joint training achieves (compared to supervised training):

- lower supervised loss on the validation (dotted)
- higher supervised loss on the train (solid)

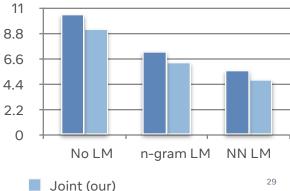


Also joint training achieves lower WER despite lower number of updates from supervised loss



11 8.8 6.6 4.4 2.2 0 No LM n-gram LM NN LM test-other

dev-other

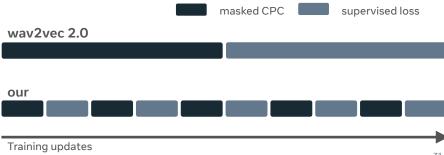


• We proposed joint training: alternate supervised and unsupervised losses minimization



Conclusion

- We proposed joint training: alternate supervised and unsupervised losses minimization
- Joint training
 - simplifies training process
 - directly optimizes for ASR task rather than for unsupervised task
 - matches state-of-the-art two-stages training



Thank You

