Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse Problems: Applications in Medical Imaging
Marija Vella, João F. C. Mota

Linear Inverse Problems

\[b \in \mathbb{R}^m \]
\[x^* \in \mathbb{R}^n \]

measurements
sparse

Reconstruct \(x^* \) from \(b \) containing \(m \) measurements

Deep Learning Methods

Optimization-based Methods

\[\hat{x} = \arg \min_x \| \Phi x \|_1 \quad \text{s.t.} \quad Ax = b \]
Assume \(\Phi x \) is sparse (DCT, TV, etc.)

Guarantees \(A\hat{x} = b \)

Computationally expensive
Outperformed by deep learning methods

Our Approach

\[\min_x \| x \|_{TV} + \beta \| x - w \|_{TV} \quad \text{s.t.} \quad Ax = b \]
Theory indicates that \(\beta = 1 \)

Experimental Results

MoDL (Aggarwal, 2019)

CRNN (Qin, 2019)

Ours

<table>
<thead>
<tr>
<th>Method</th>
<th>(| Aw - b |_2)</th>
<th>(| A\hat{x} - b |_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoDL (Aggarwal, 2019)</td>
<td>(3.10 \times 10^{-1})</td>
<td>(9.88 \times 10^{-5})</td>
</tr>
<tr>
<td>CRNN (Qin, 2019)</td>
<td>(2.06 \times 10^{-6})</td>
<td>(7.71 \times 10^{-15})</td>
</tr>
</tbody>
</table>

PSNR (SSIM) in the format average ± std

MoDL (Aggarwal, 2019)

CRNN (Qin, 2019)

Ours

<table>
<thead>
<tr>
<th>Method</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoDL (Aggarwal, 2019)</td>
<td>(39.06 \pm 1.58)</td>
<td>(0.97 \pm 0.02)</td>
</tr>
<tr>
<td>CRNN (Qin, 2019)</td>
<td>(45.96 \pm 3.94)</td>
<td>(0.98 \pm 0.02)</td>
</tr>
<tr>
<td>Ours</td>
<td>(25.45 \pm 0.71)</td>
<td>(0.76 \pm 0.02)</td>
</tr>
</tbody>
</table>