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Background

 Constant rate factor (CRF) can provide constant quality during 
encoding process. It compresses different frames by providing 
varying QP due to taking the motion into account. 

 Werner et al compare CRF and constant QB (CQB) given the 
conclusion is a certain improvement on saving bitrate by using CRF.

Fig 1. Comparation of CRF (red lines) and CQP (blue lines) at different level (17 and 
23).
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Motivation & Introduction

 Since better performance of CRF, we decide to employ CRF 
instead of QP as the parameter for rate control. 

 However, the there is no obvious relationship between CRF 
and bitrate compared with the QP. A possible method is using 
multi-pass encoding which may lead to much higher 
complexity burden.

 In this paper, the main contributions as followed:
 We found a robust content-dependent relationship between bitrate 

and CRF.
 Then we applied neural network algorithm to avoid multi-pass 

encoding for approaching target bitrate.
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CRF-Rate Model for Better Transcoding

We intent to obtain the target bitrate by two-pass coding:
 In 1st pass coding & offline training process: Deriving the model 

by using the coding features as the input of neural network to 
train content-dependent parameters for model.

 In 2nd pass coding: With the assistant of derived model, we can 
infer bitrate after encoding target samples.
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Our Proposed CRF-R model
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Improvements on proposed CRF-R model

Fig. 2. The curve of linear model (orange lines) and our proposed model (blue lines) vs. 
ground true (black dashed lines), X axis represents CRF and Y axis represents ln(bitrate).
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Improvements on proposed CRF-R model

 Table 1: shows the gains on bitrate estimative error we simply 
obtained from proposed CRF-R model.

2nd order Linear 2nd order Linear

Bitrate error within 20% Bitrate error within 10%

270p 100% 98% (2%) 99% 87% (12%)

480p 100% 96% (4%) 99% 80% (19%)

720p 99% 89% (10%) 97% 62% (35%)

1080p 97% 82% (15%) 89% 49% (40%)

Avg 99% 91% (8%) 96% 69% (27%)

Table 1. The ratio of relative bitrate error on each model, red numbers represent the 
improvement.
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Content-dependent features introduction  

 The bitrate allocation at sequence level depends on the 
complexity of content and information redundancy. Therefore, 
we extracted features involving information from both factors, 
shown as Fig. 3. 

Fig. 3. 14 Features extracted for machine learning methods rate control 
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Neural network
 In this project, we adopt 5-sec video segmentation with various 

complexity levels of content at spatial and temporal domain to 
extract feature and feed in our shallow neural network.

Fig. 4. the structure of proposed shallow neural network
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Experimental results
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Fig. 2. The curve of predicted by SNN (orange line) vs. ground truth (blue lines), X axis 
represents CRF and Y axis represents ln(bitrate).
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Experimental results
 We adopt massive iteration in order to guarantee the 

robustness of our method, training samples at each 
resolution respectively. 

Table 2. The ratio of relative bitrate error on each model and red numbers represent the 
gain obtained from our proposed method.

2nd order Linear 2nd order Linear

Bitrate error within 20% Bitrate error within 10%

270p 93.5% 95.0%(-1.5%) 72.9% 70.0% (-2.9%)

480p 93.4% 91.7% (1.7%) 77.3% 66.4% (10.9%)

720p 91.6% 84.5% (7.1%) 73.5% 52.4% (21.1%)

1080p 85.2% 73.7% (11.5%) 65.2% 40.8% (24.4%)

Avg 90.9% 86.2% (4.7%) 72.3% 58.9% (13.4%)
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Conclusion & Future work

 Main Contributions:
 A 2nd order CRF-R model  that improved 7.8% at the ratio of relative 

bitrate error within 20% and 27% at bitrate error within 10%. 
 Improved machine learning based on bitstream features reached 

90.94% at bitrate error within 20% and 72.25% at bitrate error within 
10% averagely.

 In the future, we will utilize decoding buffer pixel domain 
features to further improve the performance.

 Q & A?
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