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Background

1 Constant rate factor (CRF) can provide constant quality during
encoding process. It compresses different frames by providing
varying QP due to taking the motion into account.

d  Werner et al compare CRF and constant QB (CQB) given the

conclusion 1s a certain improvement on saving bitrate by using CRF.
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Fig 1. Comparation of CRF (red lines) and CQP (blue lines) at different level (17 and
23).
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Motivation & Introduction

L Since better performance of CRF, we decide to employ CRF
instead of QP as the parameter for rate control.

O However, the there is no obvious relationship between CRF
and bitrate compared with the QP. A possible method is using
multi-pass encoding which may lead to much higher
complexity burden.

 In this paper, the main contributions as followed:

= We found a robust content-dependent relationship between bitrate
and CREF.

* Then we applied neural network algorithm to avoid multi-pass
encoding for approaching target bitrate.
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CRF-Rate Model for Better Transcoding

L We intent to obtain the target bitrate by two-pass coding:

* |n 1st pass coding & offline training process: Deriving the model
by using the coding features as the input of neural network to
train content-dependent parameters for model.

» |n 2nd pass coding: With the assistant of derived model, we can
infer bitrate after encoding target samples.
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Fig 2. Framework of proposed
scheme
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Our Proposed CRF-R model

d We established a CRF-R model to depict the relationship
between CRF and bitrate. Previous research presented a linear

CRF-R model by Google, in our project, we presented 2™ order
CRF-R model instead.

L Both model functions list below. a(v), b(v) and c(v) are
considered as content-dependent parameters,
* Linear model:

CRF = a(v) - InR + b(v)

= 2nd grder model (We proposed):
CRF = a(v) - InR)? + b(v) - InR + c(v)

1 We evaluated curve fitting between proposed model and linear
model by least square method. The curves of each model and
ground truth are shown on Fig. 2. The curve linear model
obviously fits worse than our proposed model.
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Improvements on proposed CRF-R model
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Fig. 2. The curve of linear model (orange lines) and our proposed model (blue lines) vs.
ground true (black dashed lines), X axis represents CRF and Y axis represents In(bitrate).
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Improvements on proposed CRF-R model

(1 Table 1: shows the gains on bitrate estimative error we simply
obtained from proposed CRF-R model.

270p 100% 98% (2%) 99% 87% (12%)
480p 100% 96% (4%) 99% 80% (19%)
720p 99% 89% (10%) 97% 62% (35%)
1080p 97% 82% (15%) 89% 49% (40%)
Avg 99% 91% (8%) 96% 69% (27%)

Table 1. The ratio of relative bitrate error on each model, red numbers represent the
improvement.
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Content-dependent features introduction

 The bitrate allocation at sequence level depends on the
complexity of content and information redundancy. Therefore,

we extracted features involving information from both factors,
shown as Fig. 3.
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Fig. 3. 14 Features extracted for machine learning methods rate control
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Neural network

 In this project, we adopt 5-sec video segmentation with various
complexity levels of content at spatial and temporal domain to
extract feature and feed in our shallow neural network.
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Fig. 4. the structure of proposed shallow neural network
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Experimental results
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Fig. 2. The curve of predicted by SNN (orange line) vs. ground truth (blue lines), X axis
represents CRF and Y axis represents In(bitrate).
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Experimental results

d We adopt massive iteration in order to guarantee the
robustness of our method, training samples at each
resolution respectively.

270p 93.5% 95.0%(-1.5%) 72.9% 70.0% (-2.9%)
480p 93.4% 91.7% (1.7%) 77.3% 66.4% (10.9%)
720p 91.6% 84.5% (7.1%) 73.5% 52.4% (21.1%)
1080p 85.2% 73.7% (11.5%) 65.2% | 40.8% (24.4%)
Avg 90.9% 86.2% (4.7%) 72.3% 58.9% (13.4%)

Table 2. The ratio of relative bitrate error on each model and red numbers represent the
gain obtained from our proposed method.
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Conclusion & Future work

(J Main Contributions:

= A 2nd order CRF-R model that improved 7.8% at the ratio of relative
bitrate error within 20% and 27% at bitrate error within 10%.

* Improved machine learning based on bitstream features reached
90.94% at bitrate error within 20% and 72.25% at bitrate error within
10% averagely.

1 In the future, we will utilize decoding buffer pixel domain
features to further improve the performance.
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