Rethinking Super-resolution: The Bandwidth Selection Problem

Dmitry Batenkov† Ayush Bhandari‡ Thierry Blu*

†Massachusetts Institute of Technology • ‡Imperial College London • *Chinese University of Hong Kong

Summary

Key Takeaways
- Super-resolution is the art of recovering spikes from their low-pass projections.
- Over the last decade specifically, several significant advancements linked with mathematical guarantees and recovery algorithms have been made.
- Most super-resolution algorithms rely on a two-step procedure: deconvolution followed by high-resolution frequency estimation.
- However, for this to work, exact bandwidth of low-pass filter must be known; an assumption that is central to the mathematical model of super-resolution.
- On the flip side, when it comes to practice, smoothness rather than bandlimit- edness is a much more applicable property.
- Since smooth pulses decay quickly, one may still capitalize on the existing super-resolution algorithms provided that the essential bandwidth is known.
- This problem has not been discussed in literature and is the theme of our work.
- We propose a bandwidth selection criterion which works by minimizing a proxy of estimation error that is dependent of bandwidth.

Setup for Super-resolution of Sparse Signals

Given \(N \) time-domain, sampled measurements, \(y(nT) \) of the continuous signal

\[
y(t) = \sum_{k=0}^{K-1} c_k \phi(t - t_k),
\]

the super-resolution problem seeks to recover the \(2K \) unknowns \(\{c_k, t_k\}^{K-1} \) assuming that: (A1) \(K \) and \(\Phi \) are known; and (A2) \(\phi \) is bandlimited (its Fourier transform is compactly supported). The notion of sparsity naturally finds its way in the super-resolution problem because \(y(t) = (\phi \ast s)(t) \) where \(s \) is a continuous-time, \(K \)-sparse signal

\[
s(t) = \sum_{k=0}^{K-1} s_k \delta(t - t_k), \quad t_k \in [0, \tau].
\]

Recovery Strategy

Typical recovery procedure in the super-resolution problem exploits the structure of sparse signal. This is done in two steps:

1. **Deconvolution**
 - Here \(\hat{s}(nu) \) is estimated by using
 \[
 \hat{s}(nu) = \hat{\phi}(nu) = \sum_{k=0}^{K-1} c_k e^{-jmu(t_k)}, \quad nu \in [-\Omega, \Omega]
 \]
 - where \(\Omega \) is the bandwidth of \(\phi \).

2. **Parameter Estimation**
 - Once \(\hat{s}(nu) \) is computed, its parametric/sinusoidal form is then used for estimating unknown \(\{c_k, t_k\}^{K-1} \) using high resolution spectral estimation methods, fitting approaches or recently developed convex optimization based approaches.

Super-resolution is Sensitive to Bandwidth

Bandwidth Affects Reconstruction

Varying \(\Omega \) arbitrarily, leads to the following scenarios.

- When \(\Omega \) is such that \(N < 2K \), the parameter estimation by fitting will fail as the system is under-determined.
- Gradually increasing \(\Omega \) such that \(2Kw_0 \leq \Omega \leq \Omega_0 \) leads to over-sampling and hence to performance enhancement of the spectral estimation methods.
- Understandably, when \(\Omega \) approaches the heuristically chosen \(\Omega_0 \), the deconvolution step becomes ill-posed.

Towards a Bandwidth Selection Principle

Typically, in practice, \(\phi \) is smooth and the selection criterion for bandwidth parameter \(\Omega \) is unclear. Consider the case of noisy measurements \(m(t) = y(t) + \epsilon(t) \) where \(\epsilon(t) \) is bounded noise. Dividing \(\tilde{m}(\omega) \) by \(\phi \) (i.e. deconvolving), we obtain

\[
\tilde{m}(\omega) / \phi(\omega) = \sum_{k=0}^{K-1} -c_k e^{-j\omega t_k} + \tilde{\epsilon}(\omega), \quad |\omega| \leq \Omega
\]

\[
|\tilde{\epsilon}(\omega)| \leq \eta \left(\min_{t\in[0,T]} |\phi(\omega)|\right)^{-1}.
\]

The bandwidth selection criterion is given by \(\Omega_{opt} = \arg \min_{\Omega} G(\Omega, \mathcal{D}) \).

In the above, \(G(\Omega, \mathcal{D}) \) upper-bounds a quantity linearized condition number \(\kappa(\Omega) \),

\[
\sup_{\mathcal{D}\in\mathcal{D},D(0,K-1)} \kappa(\Omega) \leq G(\Omega, \mathcal{D}), \quad \mathcal{D} = \{c_k, t_k\}^{K-1} \in \mathbb{R}^{2K}. \]

More precisely, \(\kappa(m) \) is the \(m \)-th norm of the matrix \(J^m \), where \(J \) is the Jacobian matrix representing \(\tilde{s}(nu) \), and \((\cdot)^m \) is the Moore-Penrose pseudo-inverse.

Theorem: Suppose that \(\forall \mathcal{D} \in \mathcal{D} \subset \mathbb{R}^{2K} \), the amplitudes are bounded: \(0 < A_1 \leq |c_k| \leq A_2 \), and the minimal distance \(M_0 = \min_{k \neq k'} |t_k - t_{k'}| \geq 2\Delta > 0 \) is also bounded, then exist constants \(C_1, C_2, \ldots \) depending on \(A_1, A_2, K \), such that the following bounds hold.

- **Well-separated Regime**
 If \(\Delta > C_1 / \Omega_0 \), then \(\kappa(\Omega) \leq C_2 / \Omega_0, \quad \ell = 1, 2, \ldots, 2K - 1 \).

- **Single Cluster Regime**
 If \(M_0 < 2\pi / \Omega_0 \), then \(\kappa(\Omega) \leq C_3 / (\Omega_0 \Delta^{2K-2}) \).

Optimal Bandwidth Computation