Pruning of an Audio Enhancing Deep Generative Neural Network

Simon Plain
Arijit Biswas
Paper Overview

• Generative Adversarial Network

• Coded Audio Enhancement

• Pruning/Sparsification

• Listening Test Results

• Discussion
Starting Point and Motivation

- Generative Adversarial Networks (GAN) for enhancing coded audio\(^1\)
 - Demonstrated to enhance speech and applause

Generator – The Model to be Pruned/Sparsified

- **1D fully convolutional auto-encoder** with non-linear activations
 - Bottleneck: \(c \)
 - \(z \sim \mathcal{N}(0,1) \) concatenated at bottleneck: adds stochastic behavior to generator predictions

- **Skip connections**
 - Generated audio maintains fine structure of the coded audio
Listening Test – AAC @ 24 kbit/s Mono (Speech – VCTK Test Set) Pre-Pruning

Trained on VCTK training set: 28 speakers (14 male, 14 female) with mix of regional English accents
Why prune/sparsify networks?

Memory and processing requirements

• Achieving high accuracy requires deep and wide networks
• We want to be able to deploy Generator on complexity constrained resources

How compressible is our model?

• It is well-known that training a GAN is a difficult task
 → Pruning a Generator in a GAN setting should be even more challenging
• Literature seem to suggest that standard weight pruning techniques cannot be applied to GANs

Model Pruning – Reduce redundancy in the network

Post-training or during-training

• Set the value of unimportant parts of the model to zero

• Post-training: Fully train a model then analyze for potential pruning
 • Less effective, shorter training time

• During-training: Repeated training and pruning
 • More effective, longer training time

• Sensitivity Pruning: Technique Used
Finding Parameters for Sensitivity Based Pruning

1. Sensitivity Analysis
 - Initial Sensitivity Parameters
 - Test Vector Set
 - Trained but Unpruned Generator

2. GAN Training per Epoch
 - Intermediate Trained Generator Model
 - Number of Epoch Loops

3. Listening Tests
 - Pruned and Trained Generator to Evaluate
 - Adjusted Sensitivity Parameters
 - Final Pruned and Trained Generator Model
Sensitivity Analysis

Where is the best place to remove weights?

• Automated pruning of weights across specified range, parameter-by-parameter
 • Report ideally indicates how compressible is each feature

• In our case turned out to be not useful
 • Lack of effective objective audio measure
 • Pruning parameters too aggressive

• Solution:
 • Intuitively setting the pruning configuration based on deep learning theory and listening
 – Select sensitivity parameter in a way such that deeper layers gets pruned more than the outer layers, with the exception of the bottleneck layer.
Compression Schedule

Distiller Configuration File

- Software hooks: Integrate compression into the training loop
- This configuration, the one used in our listening tests, returned a 47% reduction in non-zero network weights
Distribution of Sparsity Across Layers
Listening Test – AAC @ 24 kbit/s Mono
Pruned vs Unpruned Models

![Graph showing comparison between AAC+DCAE and AAC+DCAE_pr](image-url)
Comparison with an Unpruned Smaller Model

DCAE_{10} has 11% fewer parameters than DCAE

DCAE_{pr} has 47% fewer parameters than DCAE
Conclusions

• We start with an audio enhancer for restoring signals with coding noise

• Our best procedures to date for constructing a pruning policy for a GAN

• Achieved nearly 50% reduction in non-zero weights with nearly negligible quality loss