

AIRCRAFT FUSELAGE DEFECT DETECTION USING DEEP NEURAL NETWORKS

TOUBA MALEKZADEH, MILAD ABDOLLAHZADEH HOSSEIN NEJATI, NGAI-MAN CHEUNG

SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN (SUTD)

Introduction

- > Aircraft inspection and maintenance is an essential to safe air transportation.
- This paper makes contributions to the field of automatic defect detection of an aircraft fuselage with image analysis techniques.

Introduction

- > Aircraft inspection and maintenance is an essential to safe air transportation.
- This paper makes contributions to the field of automatic defect detection of an aircraft fuselage with image analysis techniques.
- In recent years, deep neural networks (DNN) have shown promising results in different classification tasks.
- Although DNNs can be used to perform classification directly using the output of the last network layer, they can also be used as a feature extractor combined with a classifier.

Our Contributions

- In this paper, we investigate a classification system that employs a DNN, pretrained using natural images, to extract features for aircraft fuselage defect detection, where there are few samples available.
- The contributions of this study are:
 - The first work for automatic defect detection of aircraft fuselage using visual images and deep learning.
 - > A fast and accurate detection algorithm with selection of ROI using SURF interest points.
 - A technique to handle washed and unwashed fuselage based on pre- and postprocessing.

Datasets

- Our dataset images are taken in a straight view of the airplane fuselage.
- During the inspection, a drone can be used to capture these images automatically.
 - All images have three color channels and 3888×5184 resolution.

Datasets

Some examples of the defect(left) and no-defect(right) patches in our dataset:

- ► A *patch-based* scheme is used for detection of defects.
- Data is split into disjoint *training* and *testing* sets employing *K-fold* cross validation on the images rather than the patches to avoid *data leakage*.
- Each patch is classified into *defect or non-defect* class via a two-step process:

8

Feature Extraction

- Our experiments show, among different discriminative features, pretrained CNN results in the best performance.
- A CNN trained on ImageNet is used as feature extractor.
- Considering the limited size of our dataset, we propose to build a classifier model on top of the output (activations) of the hidden layers.

Block diagram of the proposed method for defect detection

Boosting Defect Detection

- Too many input patches \rightarrow High processing time.
- > Speed up the algorithm via enforcing the evaluation to some regions of interest.
- > The ROI must include all the probable defect areas.
- We observe that *Speeded up robust feature (SURF)* is able to detect all the defect regions together with some normal regions which are similar to the defects.

- Apply SURF interest point detector to select some patches as candidates for evaluation procedure.
- A patch is included in the *defect evaluation procedure* if it contains at least one SURF interest point.
 - > Evaluating only the patches of the ROI \rightarrow Speed up the defect detection by <u>6x</u>.

Post-processing

- > Washing status of the aircraft affects the defect detection procedure.
- \triangleright Unwashed aircraft with dirty spots on it \rightarrow misleads the defect detection.
- ► For an unwashed aircraft → apply a low-pass Gaussian filter to reduce the noise-like spots on the fuselage images
 - > Constraint \rightarrow To have minimum smoothing effect on the real defects.

Results

► The average results of applying different feature descriptors on the data set

> Feature extractor + Linear SVM

Method		Accuracy	Sensitivity	Specificity	
RGB histogram		0.603722	0.295050	0.808990	
HSV histogram		0.602995	0.309751	0.798006	
LBP		0.603833	0.126360	0.921346	
SURF		0.636679	0.274245	0.846598	
VGG-f	FC ⁶	0.876236	0.854368	0.905322	Proposed DNN methods
	FC ⁷	0.875025	0.849498	0.908975	
	FC ⁸	0.871628	0.848207	0.902778	
AlexNet	FC ⁶	0.847333	0.711691	0.937537	
	FC ⁷	0.846318	0.706273	0.939451	
	FC ⁸	0.834154	0.683291	0.934481	

Results

Results of Testing on Unseen Images

> Average performance of the proposed algorithm on a set of unseen images:

Accuracy	Sensitivity	Specificity	Runtime (sec)
0.963784	0.964891	0.963823	15.7874

- 'fc6' of VGG-f \rightarrow as feature extractor.
- ▶ Pretrained CNN model \rightarrow From MatConvnet library.

Results

- ▶ 96.37% accuracy \rightarrow only 3.63% of the patches are misclassified.
- ▶ 96.48% sensitivity \rightarrow 3.52% of the defect patches are missed.
 - Every defect region is at least partially detected which means practically the system has located all defect regions.
- > 96% specificity \rightarrow 4% of the whole airplane structure needs to be manually inspected by the worker.
- The average run time 15.78 seconds for high resolution image (on a laptop computer) \rightarrow enables efficient automatic inspection.

Some examples:

Accuracy:0.980378 Sensitivity:1.000000 Specificity:0.980263

24

Some examples:

Accuracy:0.972384 Sensitivity:1.000000 Specificity:0.972079

25

Conclusion

- Proposed an automatic aircraft fuselage defect detection method.
- > Our proposed defect detection applies transferred features from pre-trained CNNs .
- Propose to speed up defect detection algorithm using ROIs detected by SURF.
- The proposed technology can detect almost all the defects of the aircraft fuselage, reducing the workload of manual inspection significantly.

Question: ngaiman_cheung@sutd.edu.sg