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Introduction 
u  Aircraft inspection and maintenance is an essential to safe air transportation. 

u  This paper makes contributions to the field of automatic defect detection of an 

aircraft fuselage with image analysis techniques. 
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Introduction 
u  Aircraft inspection and maintenance is an essential to safe air transportation. 

u  This paper makes contributions to the field of automatic defect detection of an 

aircraft fuselage with image analysis techniques. 

u  In recent years, deep neural networks (DNN) have shown promising results in 

different classification tasks. 

u  Although DNNs can be used to perform classification directly using the output of the 

last network layer, they can also be used as a feature extractor combined with a 

classifier. 
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Our Contributions 
u  In this paper, we investigate a classification system that employs a DNN, 

pretrained using natural images, to extract features for aircraft fuselage defect 
detection, where there are few samples available. 

u  The contributions of this study are: 
Ø  The first work for automatic defect detection of aircraft fuselage using visual 

images and deep learning. 
Ø  A fast and accurate detection algorithm with selection of ROI using SURF 

interest points. 
Ø  A technique to handle washed and unwashed fuselage based on pre- and post-

processing. 
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Datasets 
u  Our dataset images are taken in a straight view of the airplane fuselage. 
u  During the inspection, a drone can be used to capture these images 

automatically. 
u   All images have three color channels and 3888×5184 resolution. 
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Datasets 
u  Some examples of the defect(left) and no-defect(right) patches in our 

dataset: 
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Methodology 
u  A patch-based scheme is used for detection of defects. 
u  Data is split into disjoint training and testing sets employing K-fold cross 

validation on the images rather than the patches to avoid data leakage. 

u  Each patch is classified into defect or non-defect class via a two-step process: 
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Defect or Non-Defect? 

1. Feature extraction 
First, computing a set of 
features for each patch. 

2. Classification (Linear 
SVM)  

Second, building a classification 
model based on the extracted 

features. 



Methodology 

Feature Extraction 

u  Our experiments show, among different discriminative features, pretrained CNN 

results in the best performance. 

u  A CNN trained on ImageNet is used as feature extractor. 

u  Considering the limited size of our dataset, we propose to build a classifier model 

on top of the output (activations) of the hidden layers. 
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Methodology 

Block diagram of the proposed method for defect detection 
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Methodology 

Boosting Defect Detection 

u  Too many input patches è High processing time. 

u  Speed up the algorithm via enforcing the evaluation to some regions of interest.  

u  The ROI must include all the probable defect areas. 

u  We observe that Speeded up robust feature (SURF) is able to detect all the 

defect regions together with some normal regions which are similar to the 

defects.  
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Methodology 
u  Apply SURF interest point detector to select some patches as candidates for 

evaluation procedure.  
u  A patch is included in the defect evaluation procedure if it contains at least one 

SURF interest point.  

u  Evaluating only the patches of the ROI è Speed up the defect detection by 6x.  
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Methodology 
Post-processing 

u  Washing status of the aircraft  affects the defect detection procedure. 

u  Unwashed aircraft with dirty spots on it è misleads the defect detection. 

u  For an unwashed aircraft è apply a low-pass Gaussian filter to reduce the 

noise-like spots on the fuselage images 

Ø  Constraint è To have minimum smoothing effect on the real defects. 
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Results 
u  The average results of applying different feature descriptors on the data set 

Ø  Feature extractor + Linear SVM 

Method Accuracy Sensitivity Specificity 
RGB histogram 0.603722 0.295050 0.808990 
HSV histogram 0.602995 0.309751 0.798006 

LBP 0.603833 0.126360 0.921346 
SURF 0.636679 0.274245 0.846598 

  
VGG-f FC6 0.876236 0.854368 0.905322 

FC7 0.875025 0.849498 0.908975 
FC8 0.871628 0.848207 0.902778 

  
AlexNet FC6 0.847333 0.711691 0.937537 

FC7 0.846318 0.706273 0.939451 
FC8 0.834154 0.683291 0.934481 
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Proposed 
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Results 
Results of Testing on Unseen Images 
u  Average performance of the proposed algorithm on a set of unseen images: 

u  ‘fc6’ of VGG-f è as feature extractor.  

u  Pretrained CNN model è From MatConvnet library. 

 

Accuracy Sensitivity Specificity Runtime 
(sec) 

0.963784 0.964891 0.963823 15.7874 
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Results 

u  96.37% accuracy è only 3.63 % of the patches are misclassified.  

u  96.48% sensitivity è 3.52% of the defect patches are missed.  

§  Every defect region is at least partially detected which means practically the 

system has located all defect regions.  

u  96% specificity è 4% of the whole airplane structure needs to be manually 

inspected by the worker. 

u  The average run time 15.78 seconds for high resolution image (on a laptop 

computer) è enables efficient automatic inspection. 
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Some examples: 

Accuracy:0.980378 
Sensitivity:1.000000 
Specificity:0.980263 
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Accuracy:0.972384 
Sensitivity:1.000000 
Specificity:0.972079 

Some examples: 25 



Conclusion 

u  Proposed an automatic aircraft fuselage defect detection method. 

u  Our proposed defect detection applies transferred features from pre-trained CNNs .  

u  Propose to speed up defect detection algorithm using ROIs detected by SURF. 

u  The proposed technology can detect almost all the defects of the aircraft fuselage, 

reducing the workload of manual inspection significantly. 

u  Question: ngaiman_cheung@sutd.edu.sg 
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