

A Hybrid Dictionary Approach for Distributed Kernel Adaptive Filtering in Diffusion Networks

Ban-Sok Shin, Armin Dekorsy

Department of Communications Engineering University of Bremen, Germany Email: {shin, dekorsy} @ant.uni-bremen.de

Masahiro Yukawa

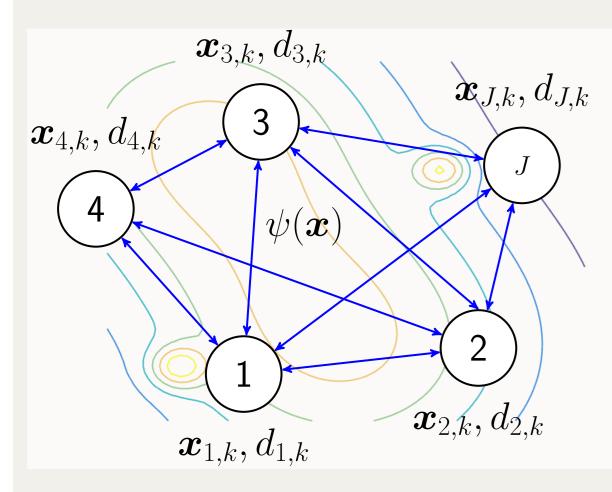
Dept. of Electronics and Electrical Engineering Keio University, Japan Email: yukawa@elec.keio.ac.jp

Renato L.G. Cavalcante

Fraunhofer Heinrich Hertz Institute Technical University of Berlin, Germany Email: renato.cavalcante@hhi.fraunhofer.de

Motivation

Scenario:



▶ Mobile sensor network of J nodes samples nonlinear spatial field ψ(x) e.g. spatial distribution of physical quantity
 ▶ ψ(x) consists of local part ψ_L with high

Diffusion-Based KAF with Hybrid Dictionary

Define complete kernel Gram matrix

$$oldsymbol{K}_{j,k} := egin{bmatrix} oldsymbol{K} & oldsymbol{0} \ oldsymbol{K}_{j,k} \end{bmatrix} \in \mathbb{R}^{NR_{j,k} imes NR_{j,k}}.$$

 $\triangleright \overline{K}$ is global Gram matrix using \mathcal{D}^{G} , **fixed** over time k

- **frequency** component and **global part** $\psi_{\rm G}$ with **low frequency** component
- Each node j acquires noisy measurement of $\psi(\boldsymbol{x})$ at current Cartesian position $\boldsymbol{x}_{j,k}$:

 $d_{j,k} = \psi_{\mathsf{G}}(\boldsymbol{x}_{j,k}) + \psi_{\mathsf{L}}(\boldsymbol{x}_{j,k}) + n_{j,k}$

- \triangleright **Objective:** Distributed nonlinear reconstruction of global $\psi_{\rm G}$ and individual reconstruction of local $\psi_{\rm L}$ in direct vicinity of each node
- $\blacktriangleright \ {\sf Kernel \ adaptive \ filter} \ {\sf (KAF) \ suitable \ for \ \underline{nonlinear} \ approximation \ of \ \psi({\bm x})}$
- \triangleright SotA distributed KAFs use one global and fixed dictionary $\mathcal D$ for all nodes
- Problem: high frequency components in direct vicinity of nodes cannot be recovered with global dictionary

Approach: Use hybrid dictionary with **fixed** and **dynamic** part for **global** and **local** reconstruction.

Dictionary Strategies for Distributed KAF

SotA global dictionary [1,2]:

- \blacktriangleright Each node j equipped with KAF $\varphi_{j,k}$ using kernel κ
- > All nodes use common and fixed dictionary $\mathcal{D} = \{\kappa(\cdot, \bar{\boldsymbol{x}}_n)\}_{n=1}^N$
- \triangleright Estimate of KAF for arbitrary input sample x at node j:

- $\triangleright \mathbf{K}_{j,k}$ is local Gram matrix of node j using $\mathcal{D}_{j,k}^{\mathsf{L}}$, changing over time k
- **Two-step diffusion-based KAF [3]:**
 - 1 Local adaptive update per node j on complete $oldsymbol{w}_{j,k}$

$$w_{j,k+1} = w_{j,k} - \mu \left(w_{j,k} - P_{H_{j,k}}^{K_{j,k}}(w_{j,k}) \right)$$

with $m{K}_{j,k}$ -orthogonal projection $P_{H_{j,k}}^{m{K}_{j,k}}(m{w}_{j,k})$ of $m{w}_{j,k}$ onto hyperplane

$$H_{j,k} := \left\{ \boldsymbol{w} \in \mathbb{R}^{NR_{j,k}} | \langle \boldsymbol{w}, \boldsymbol{K}_{j,k}^{-1} \boldsymbol{\kappa}(\boldsymbol{x}) \rangle_{\boldsymbol{K}_{j,k}} = d_{j,k} \right\}$$

2 Consensus averaging with neighboring nodes only on global $w_{j,k+1}^{\sf G}$

Numerical Evaluation

> Spatial reconstruction of **multiple Gaussian functions**:

$$\psi_{\mathsf{G}}(\boldsymbol{x}) = \sum_{\ell=1}^{2} \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{p}_{\ell}^{\mathsf{G}}||^{2}}{2 \cdot 0.3^{2}}\right), \quad \psi_{\mathsf{L}}(\boldsymbol{x}) = \sum_{\ell=1}^{2} 0.8 \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{p}_{\ell}^{\mathsf{L}}||^{2}}{2 \cdot 0.04^{2}}\right)$$
with $\boldsymbol{p}_{1}^{\mathsf{G}} = [0.5, 0.2]^{\mathsf{T}}, \boldsymbol{p}_{2}^{\mathsf{G}} = [0.2, 0.8]^{\mathsf{T}}, \boldsymbol{p}_{1}^{\mathsf{L}} = [0.7, 0.7]^{\mathsf{T}}, \boldsymbol{p}_{2}^{\mathsf{L}} = [0.15, 0.15]^{\mathsf{T}}$

$$\triangleright J = 16 \text{ nodes}, 1/\sigma_{n}^{2} = 10 \text{ dB}, 100 \text{ realizations (noise & topology)}$$

$$\triangleright \text{ Separate unit-square into 16 equal square regions, one for each node}$$

$$\triangleright \text{ Random movement of nodes in their specific region}$$

$$\triangleright \text{ Gaussian kernel with bandwidth } \zeta: \kappa(\boldsymbol{x}_{j}, \boldsymbol{x}_{n}) = \exp\left(-||\boldsymbol{x}_{j} - \boldsymbol{x}_{n}||^{2}/2\zeta^{2}\right)$$

$$\varphi_{j,k}(\boldsymbol{x}) := \sum_{n=1}^{N} w_{j,n}^{k} \kappa(\boldsymbol{x}, \bar{\boldsymbol{x}}_{n}) = \boldsymbol{w}_{j,k}^{\mathsf{T}} \boldsymbol{\kappa}(\boldsymbol{x})$$

with $\boldsymbol{w}_{j,k} := [w_{j,1}^k, \dots, w_{j,N}^k]^\mathsf{T}$ and $\boldsymbol{\kappa}(\boldsymbol{x}) := [\kappa(\boldsymbol{x}, \bar{\boldsymbol{x}}_1), \dots, \kappa(\boldsymbol{x}, \bar{\boldsymbol{x}}_N)]^\mathsf{T}$. Proposed hybrid dictionary:

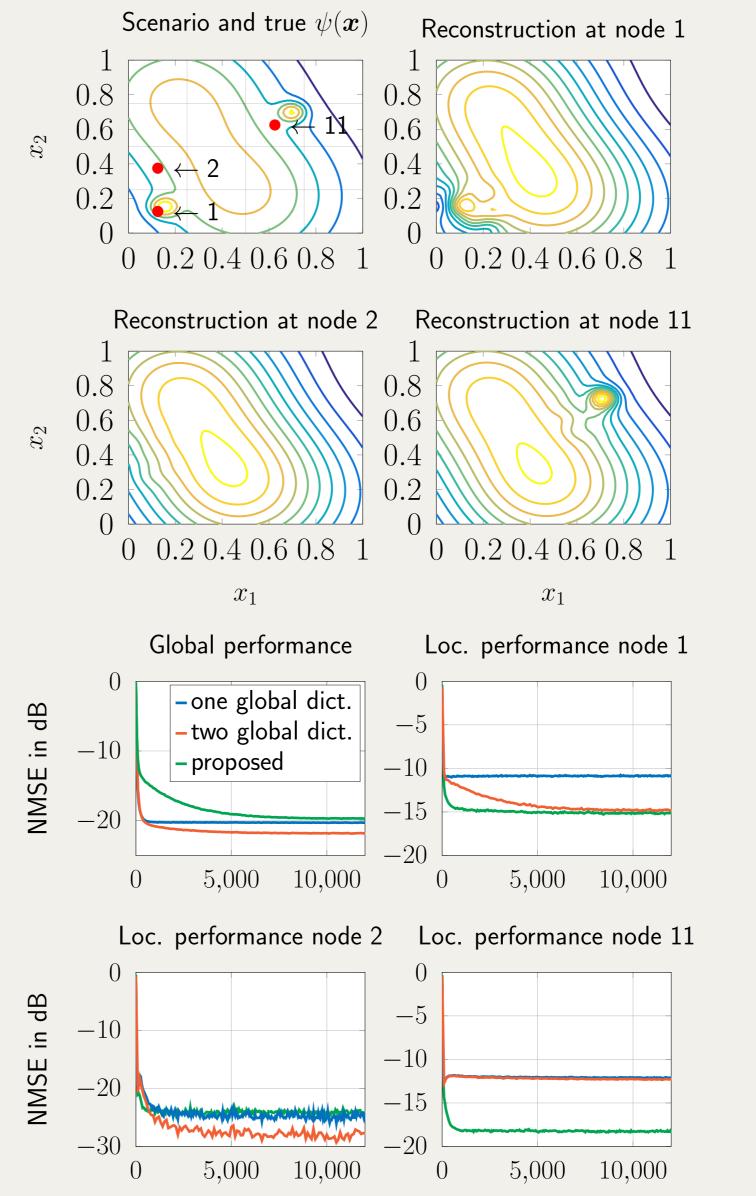
- ▷ Employ global κ_{G} and local κ_{L} kernel with separate dictionaries ▷ Global dictionary $\mathcal{D}^{G} := {\kappa_{G}(\cdot, \bar{x}_{n}^{G})}_{n=1}^{N}$:
 - \triangleright fixed and common to all J nodes
 - initialized a priori
- $\triangleright \text{ Local dictionary } \mathcal{D}_{j,k}^{\mathsf{L}} := \{\kappa_{\mathsf{L}}(\cdot, \boldsymbol{x}_{j,n})\}_{n \in \mathcal{R}_{j,k}}:$
 - ▷ adapted by each node j per time k based on node positions $x_{j,k}$ ▷ $\mathcal{R}_{j,k}$ indicates which samples $x_{j,k}$ are included into $\mathcal{D}_{j,k}^{\mathsf{L}}$
- \triangleright Separate node-specific $w_{j,k}$ and $\kappa_j(x)$ into global and local parts

$$oldsymbol{w}_{j,k} := egin{bmatrix} oldsymbol{w}_{j,k}^{\mathsf{G}} \ oldsymbol{w}_{j,k} \end{bmatrix}, \quad oldsymbol{\kappa}_{j}(oldsymbol{x}) := egin{bmatrix} oldsymbol{\kappa}_{\mathsf{G}}(oldsymbol{x}) \ oldsymbol{\kappa}_{\mathsf{L},j}(oldsymbol{x}) \end{bmatrix}$$

- ▷ Evaluate local $\kappa_{L,j}(\boldsymbol{x})$ wrt. $\mathcal{D}_{j,k}^{L}$, global $\kappa_{G}(\boldsymbol{x})$ wrt. \mathcal{D}^{G}
- \triangleright Nodes only share global $w_{j,k}^{\mathsf{G}}$ with neighboring nodes
- \triangleright Each node j able to locally refine reconstruction based on $\mathcal{D}_{j,k}^{\mathsf{L}}$ and $\boldsymbol{w}_{j,k}^{\mathsf{L}}$

Local Dictionary Learning

▷ Global and local Gaussian kernel with $\zeta_{G} = 0.3$ and $\zeta_{L} = 0.04$ ▷ Global dictionary contains all 16 center points of node regions



- \triangleright True $\psi(\pmb{x})$ and individual reconstructions at three selected nodes
- \triangleright All nodes with good estimate of global field $\psi_{\rm G}$
- Nodes 1 and 11 able to recover local high frequency components
- Reconstruction at node 2 not tampered by other nodes
- ▷ One global dictionary with $\zeta_{\rm G} = 0.04$
- **Two global dictionaries** with $\zeta_{G,1} = 0.3, \zeta_{G,2} = 0.04$
- Hybrid dictionary enhances local performance significantly
- ▷ Local performance of node 2 similar

▷ Each node j examines current position $x_{j,k}$ for inclusion into local $\mathcal{D}_{j,k}^{\mathsf{L}}$ ▷ Position $x_{j,k}$ needs to pass **coherence criterion**:

 $\max_{n \in \mathcal{R}_{j,k}} |\kappa_{\mathsf{L}}(\boldsymbol{x}_{j,k}, \boldsymbol{x}_{j,n})| \leq \tau, \quad 0 < \tau \leq 1.$

▷ A priori estimation error $e_{j,k} := d_{j,k} - w_{j,k}^{\mathsf{T}} \kappa(x_{j,k})$ for $x_{j,k}$ needs to satisfy

 $|e_{j,k}/d_{j,k}| > \varepsilon, \quad \varepsilon \ge 0$ $\triangleright \text{ If both criteria are fulfilled, } \boldsymbol{x}_{j,k} \text{ is included via } \mathcal{D}_{j,k+1}^{\mathsf{L}} = \mathcal{D}_{j,k}^{\mathsf{L}} \cup \{\kappa_{\mathsf{L}}(\cdot, \boldsymbol{x}_{j,k})\}$

P. Bouboulis, S. Chouvardas, and S. Theodoridis, "Online distributed learning over networks in RKH spaces using random fourier features," arXiv:1703.08131 [cs.LG], 2017.
 S. Chouvardas and M. Draief, "A diffusion kernel LMS algorithm for nonlinear adaptive networks," in IEEE ICASSP, March 2016.

to other approaches

iteration k

Conclusion

iteration k

Novel dictionary learning scheme for distributed KAFs proposed
 Hybrid dictionary improves performance of local approximation at nodes
 Future work: Extend local dictionary learning by multiple kernels and include selection of kernel with best fit

[3] B.-S. Shin, M. Yukawa, R.L.G. Cavalcante, and A. Dekorsy, "Distributed adaptive learning with multiple kernels in diffusion networks," arXiv:1801.07087 [eess.SP], submitted to IEEE Transactions on Signal Processing, 2018.

