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Motivation

Scenario:

> Mobile sensor network of J nodes samples
nonlinear spatial field ¢)(x) e.g. spatial
distribution of physical quantity

> 1y(a) consists of local part v with high
frequency component and global part
e with low frequency component

> Each node 5 acquires noisy measurement of
() at current Cartesian position & x:

dix = Ye(®jk) + YL(®k) + Nk

> Objective: Distributed nonlinear reconstruction of global ¢ and individual
reconstruction of local 7/ in direct vicinity of each node

> Kernel adaptive filter (KAF) suitable for nonlinear approximation of ¢(x)
> SotA distributed KAFs use one global and fixed dictionary D for all nodes

> Problem: high frequency components in direct vicinity of nodes cannot be
recovered with global dictionary

Approach: Use hybrid dictionary with fixed and dynamic part for
global and local reconstruction.

Dictionary Strategies for Distributed KAF

SotA global dictionary [1,2]:

> Each node j equipped with KAF ¢, ;. using kernel
N

n=1

> All nodes use common and fixed dictionary D = {k(-, x,)

> Estimate of KAF for arbitrary input sample x at node j:

i (T Z W, k(T w]Tkﬁ:(m)

with w; ;. .= [w}, ... w;“N] and K(x) = |k(x,x), ...

Proposed hybrid dictionary:

> Employ global x¢ and local ~| kernel with separate dictionaries
> Global dictionary D¢ := {xg(-, 25)}

n nzl:

k(x, N)| .

> fixed and common to all J nodes
> initialized a priori
> Local dictionary D; . = {kL(", Zjn) }ner,,
> adapted by each node j per time k based on node positions x; ;.
> R indicates which samples x; ;. are included into DJL-?,{
> Separate node-specific w;j and Kk;(x) into global and local parts
G

—w'k KglT
wip=| |, kx) = ( |
Wik _K’L;](w)_

> Evaluate local x| () wrt. DLk, global rg(x) wrt. D°

> Nodes only share global ’wj)k with neighboring nodes

> Each node 5 able to locally refine reconstruction based on DLk and fw] .

Local Dictionary Learning

> Each node j examines current position & ;. for inclusion into local D]L-k
> Position x; needs to pass coherence criterion:

max |k (Tjp xin)| <7, 0<7 <1

nER] L

> A priori estimation error ¢ ;== d; —
satisfy

.
w; k(@) ;) for ;) needs to

: : : .. : | - | |
> If both criteria are fulfilled, @ is included via D, | = D>, U{ri(-, x;)}
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Diffusion-Based KAF with Hybrid Dictionary

> Define complete kernel Gram matrix

K 0

- E RNRJ'J{XNR]',]{.
0 K,

Kj,k —

> K is global Gram matrix using D°, fixed over time k
> K is local Gram matrix of node j using DLk, changing over time £k

> Two-step diffusion-based KAF [3]:
1 Local adaptive update per node 57 on complete w; ;.

_ K
Wi+l = Wik — H (’wj,k — Pp; (’wy',k))

with K ; i-orthogonal projection P (w] k) of w,j onto hyperplane

\

Hjj = {fw c RN <w, K]_k&(w»_;(k =dj ¢

/

> Consensus averaging with neighboring nodes only on global w

]k+1
Numerical Evaluation
> Spatial reconstruction of multiple Gaussian functions:
2 2
R I e B R W
with pf = [0.5,0.2]", p$ = [0.2,0.8]", pt = [0.7, o 7] ,p5 = 1[0.15,0.15]"
> J = 16 nodes, 1/0° = 10dB, 100 realizations (noise & topology)

> Separate unit-square into 16 equal square regions, one for each node

> Random movement of nodes in their specific region

> Gaussian kernel with bandwidth ¢: x(x;, x,) = exp (—||x; — @,||*/2¢?)
> Global and local Gaussian kernel with (¢ = 0.3 and (| = 0.04

> Global dictionary contains all 16 center points of node regions

Scenario and true ¥(x)
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Global performance Loc. performance node 1
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Conclusion

> Novel dictionary learning scheme for distributed KAFs proposed
> Hybrid dictionary improves performance of local approximation at nodes

> Future work: Extend local dictionary learning by multiple kernels and
include selection of kernel with best fit
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