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Introduction 
 
What is Matrix Completion? 
 
The aim is to recover a low‐rank matrix given only a subset 
of its possibly noisy entries, e.g., 
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Denote the known entries of an incomplete matrix  
as : 
 

  

 
where  is a subset of the complete set of entries , 
with  being the list  while the unknown entries are 
assumed zero. 
 
Basically, matrix completion is to find a matrix , 
which is an estimate of , given  with the use of low‐
rank information of , which can be mathematically 
formulated as: 
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Why Matrix Completion is Important? 
 
It is a core problem in many applications including: 
 
 Collaborative Filtering 
 Image Inpainting and Restoration 
 System Identification 
 Node Localization 
 Genotype Imputation 
 
It is because many real-world signals can be approximated 
by a matrix whose rank is . 
 
Netflix Prize, whose goal was to accurately predict user 
preferences with the use of a database of over 100 million 
movie ratings made by 480,189 users in 17,770 films, 
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which corresponds to the task of completing a matrix with 
around 99% missing entries. 
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How to Recover an Incomplete Matrix? 
 
Directly solving the noise-free version: 
 

 

 
or noisy version: 
 

 
 
is difficult because the rank minimization problem is NP-
hard. 
 
A popular and practical solution is to replace the nonconvex 
rank by convex nuclear norm: 
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or 
 

 
where  equals the sum of singular values of . However, 
complexity of nuclear norm minimization is still high and 
this approach is not robust when  contains outliers. 
 
Another popular direction which is computationally simple is 
to apply low-rank matrix factorization: 
 

 
 
where  and . However, generalization of 
the Frobenius norm to ‐norm for handling impulsive 
measurements is difficult. 
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Matrix Completion as a Feasibility Problem 
 
We formulate matrix completion with noise-free entries as: 
 
  
 
where an estimate or true value of  is needed. 
 
It is called a feasibility problem because this optimization 
formulation has no objective function, but two constraints: 
 
 Low-rank constraint:  
 Fidelity constraint:   
  
With Gaussian noise, the fidelity constraint is modified as: 
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To achieve robustness, the feasibility problem is: 
 

 
 

The rank constraint set is: 
 

 
 
and the fidelity constraint set is: 
 

 
where  

 

 
is element‐wise ‐norm which is robust to outliers if . 
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We may rewrite the robust feasibility problem as: 
 

 
 
Remarks: 
 
  is a generalization as  

reduces to noise-free version while  reduces to 
conventional scenario of handling Gaussian noise. 
 

 We restrict our study for  and  since their 
projections onto  have closed‐form expressions and are 
not difficult to compute. 

 
  requires computing projection onto a nonconvex 

and nonsmooth -ball, which is difficult to compute. 
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Alternating Projection Algorithm 
 

Define the projection of a point    onto any constraint 
set , denoted as : 
 

 

 
That is, projection onto rank constraint set is: 
 

 
 
and projection onto fidelity constraint set is: 
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High-Level Algorithm 
 
The proposed alternating projection algorithm (APA) is 
outlined in Algorithm 1: 
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According to Eckart‐Young theorem, the projection of  
onto  can be computed via truncated singular value 
decomposition (SVD) of : 
 

   

 
where , , and  are the  largest 
singular values and the corresponding left and right singular 
vectors of , respectively.  
 
Assuming , the complexity is  which is much 
smaller than that of full SVD of  required in the 
nuclear norm minimization based methods, particularly 
when . 
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Noting that projection onto only affects the entries 
indexed by , we first define , which is a vector that 
contains the observed entries of , e.g., if 
 

 

then 
 

 
Hence  has the equivalent vector 
form: 
 

   
 
which is an ‐ball with the observed vector  being ball 
center. 
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We consider the following three cases with different values 
of  and : 

 
 For ,  reduces to equality constraint of . 

For any vector , the projection is simply calculated 
as . 

 
 For  and ,  is the conventional ‐ball in the 

Euclidean space. For any vector , it is not difficult to 
derive the closed‐form expression of the projection onto 

 as 

  

 
With a proper value of , the robustness to Gaussian 
noise is enhanced. 
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 For  and ,  is an ‐ball. For any vector , 
the projection onto  is the solution of: 
 

   

 
Using the Lagrange multiplier method, we obtain: 

 
  
 

where , and  is the unique root of the 
nonlinear equation: 
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The computational complexity of projection onto ‐ball is 
, which is much lower than that of projection onto 

. 
 
Note that  also involves the projection onto a 
convex ‐ball, which is not difficult to solve but requires 
an iterative procedure.  
 
As  is more robust than  in the presence of 
outliers, the latter case will not be considered. 

 
Remarks: 
 
 For the noise-free case, it is clear that  is the 

optimal value. 
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 Roughly speaking, larger noise requires a larger  for 
. If we know the probability density function (PDF) 

of the noise, proper value of  can be calculated. 
 

 Note that the nuclear norm regularized problem: 
 

 

 
also faces the issue of selecting the user-defined . 
 

 Note also that our APA is different from the iterative hard 
thresholding (IHT) and its variants although they all use 
a rank‐  projection.  
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More precisely, IHT solves the rank constrained 
Frobenius norm minimization: 
 

 

 
using gradient projection with update step being 
 

   
 

where determining  with a line search scheme requires 
computing projection  for several times. Hence its 
computational cost is higher than APA per iteration. 
 

 We prove that if initial point is close enough to , 
then APA locally converges to  at a linear rate. 
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Numerical Examples 
 
Noise‐free  of rank  is generated by the product 
of  and  whose entries satisfy standard 
Gaussian distribution, where , , and . 
 
45% of the entries of  are randomly selected as the 
known observations. 
 
Impulsive noise is modelled as two-term Gaussian mixture 
model (GMM) whose PDF is 
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Signal‐to‐noise ratio (SNR) is defined as: 
 

 

 
Normalized root mean square error (RMSE) is defined as: 
 

 

 
which is calculated based on 200 independent runs. 
 
Comparison with singular value thresholding (SVT) and IHT 
with ,  and , are included. 
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Figure 1: RMSE versus iteration number in noise-free case 
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Figure 2: RMSE versus iteration number at SNR=6dB 
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Figure 3: RMSE versus SNR in GMM noise 
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Figure 4: RMSE versus estimated rank at SNR=12dB 
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Figure 5: RMSE versus  with  at SNR=12dB 
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Concluding Remarks 
 
 The key idea is to formulate matrix completion as a 

feasibility problem, where a common point of the low-
rank constraint set and fidelity constraint set is found by 
alternating projection. 
 

 The fidelity constraint set is modelled as an -ball, where 
 or , which results in closed-form projection. 

 
 The APA achieves robustness against Gaussian noise and 

outliers, with  and , respectively. 
 
 The APA is conceptually simpler and computationally 

more efficient than the popular methods including the 
SVT and IHT. 
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