Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation by Use of Convolutional Neural Networks

Adrian Shajkofci^{1,2}, Michael Liebling^{1,3} adrian.shajkofci@idiap.ch

¹Computational Bioimaging Group, Idiap Research Institute, Martigny, Switzerland ²Electrical Engineering Doctoral Program, EPFL, Lausanne, Switzerland ³Electrical and Computer Engineering Department, University of California, Santa Barbara, USA

deconvolution Original PSF: Measured cumbersome to measure experimentally spatially varying • changes from microscope to microscope

$$x(\mathbf{s}) = \mathcal{F}^{-1} \left[\sum_{m}^{M} \mathcal{F}(h_m(\mathbf{s})) \cdot \mathcal{F}(\varphi_m(\mathbf{s}) \cdot y(\mathbf{s})) \right]$$

$$x^{i+1}(\mathbf{s}) = \sum_{m}^{M} \left[\frac{(h_m * (\varphi_m \cdot y))(\cdot)}{(h_m * x_m^t)(\cdot)} * h_m(-\cdot) \right] (\mathbf{s}) \cdot \frac{1}{1 - \lambda}$$

Initiative.

$=Z_k(\theta,\rho)$	Aberration name
$(2\rho^2 - 1)$	Defocus
$ ho^2(sin2 heta)$	Astigmatism
$p^4 - 6\rho^2 + 1)$	Spherical aberration
•••	•••