Adversarial Multi-Task Deep Features and Unsupervised Back-End Adaptation for Language Recognition

Zhiyuan Peng*, Siyuan Feng* and Tan Lee
DSP-Speech Technology Lab, Dept. of Electronic Engineering, The Chinese University of Hong Kong (CUHK)
{jerroypeng1937, fengsym.ee}@gmail.com, tanlee@ee.cuhk.edu.hk (‘Equal contribution)

Task description

• Language recognition on very short (1s) test utterances.
• Severe domain mismatch (esp. recording conditions) between training and test utterances.

Motivation & Contribution

• Front-end: Speaker adversarial multi-task learning (AMTL)
 – Phonetic bottleneck features (BNFs) outperform spectral features in i-vector training.
 – Speaker variation is implicitly suppressed by phonetic BNF learning.
 – Speaker AMTL aims explicitly at speaker-invariant BNF learning.
• Front-end: Unsupervised adaptation of probabilistic linear discriminant analysis (PLDA)
 – Commonly used back-end models e.g. LDA and Gaussian linear classifier suffer from severe performance degradation due to domain mismatch.
 – Unsupervised PLDA adaptation is effective in alleviating domain mismatch in speaker recognition [1].

Model Structures

• General framework:

 Training data → Speaker-invariant feature learning → Front-end → Back-end → Test i-vectors → Scoring

 Front-end: one-layer MLP with 512 neurons, followed by softmax output.
 Back-end: Language adaptive PLDA with 12 neurons in the bottleneck layer.

• Speaker-invariant feature learning:

 BNGS (BNF) → Bottleneck layer → Speaker labels

 AMTL: Back-end language-adaptation is learned as a cross-entropy loss.

• Back-end PLDA estimation:

 PLDA assumes an i-vector \(h_i \) (i-th utterance in i-th language) generated as,
 \[
 \omega_i \sim \mu_i + \mathbf{F}_i \mathbf{h}_i + \mathbf{e}_i,
 \]
 \[
 \mathbf{e}_i \sim N(0; \Sigma),
 \]
 \[
 \mathbf{F}_i \in \mathbb{R}^{D \times L}, \mu_* \in \mathbb{R}^D, \Sigma \in \mathbb{R}^{D \times D},
 \]
 where \(\mu_i \in \mathbb{R}^L, \mathbf{F}_i \in \mathbb{R}^{D \times L}, \Sigma \in \mathbb{R}^{D \times D} \).

 – Columns of \(\mathbf{F} \) provide the basis for the language-specific subspace, or eigen-language.
 – \(D \) is the subspace dimension, normally smaller than \(16384 \) (flangues in this work).

 – Based on Eqn. (4), an i-vector is assumed drawn from \(N(\mu_i, \Sigma \mathbf{F}^T \mathbf{F} \Sigma) \), wherein and between-class variability \(\mu_i \) is global mean and can be precomputed and removed.

 – PLDA parameters \((\mathbf{F}, \Sigma) \) are estimated by an EM algorithm [2].

 – During scoring phase, PLDA computes the similarity score of a trial \((\omega, i) \) composed of a test i-vector \(\omega \) and language i as,
 \[

 \mathcal{N}(\omega, i) = \log \left(\frac{\mu_i^T \omega \mathbf{F}^T \Sigma \mathbf{F} \mu_i}{\sigma_i^2} \right)
 \]
 where \(\sigma_i^2 \) is the average of training i-vectors that belong to language i.

• Unsupervised PLDA adaptation:

 – Leverage test (in-domain) i-vectors for adapting PLDA parameters \((\mathbf{F}_0, \Sigma_0) \) estimated from training (out-of-domain) i-vectors.

 – Key issue: test-i-vectors lack labels.

 – Solution: Agglomerative hierarchical clustering (AHC) towards test-i-vectors to obtain labels.

 – Distance between a pair of i-vectors \(q_0 \) and \(q_2 \) is defined based on \((\mathbf{F}_0, \Sigma_0) \) as follows,
 \[
 \delta(q_0, q_2) = -\log \left(\frac{\mu_0^T q_0 \mathbf{F}_0 \Sigma_0 \mathbf{F}_0 \Sigma_0 \mu_0}{\sigma_0^2} \right)
 \]
 – AHC with complete-linkage criterion is performed until a pre-defined cluster number is reached.

 – In-domain PLDA \((\mathbf{F}_d, \Sigma_d) \) are estimated by test-i-vectors and their cluster labels.

 – Final scoring based on \((\mathbf{F}_d, \Sigma_d) \).

APIT-OLR Task Description

• APIT-OLR challenge dataset [3]: 10 oriental languages, each with 10 hours recorded by mobile phones.

 – Training: 17, 549 utterances, 77 hours.
 – Test-1C: 17, 549 utterances, 7 hours.
 – Test-1S: 22, 051 utterances, 6 hours.

 – Evaluation metric: \(C_{\text{avg}} \) and Equal Error Rate (EER).

 \[
 C_{\text{avg}} = \frac{1}{L} \sum_{l=1}^{L} \left[P_{\text{IS}}(l) - \frac{1}{N-1} \sum_{l \neq l} P_{\text{IS}}(l, l) \right],
 \]
 where \(N \) is the number of languages, \(L \) is the target and non-target languages, \(P_{\text{IS}} \) and \(P_{\text{SS}} \) are the missing and false alarm rates.

 – Measuring the mismatch between training and dev-\text{Is}:

 • Measuring the mismatch between training and dev-\text{Is}: A demo experiment is conducted to show the domain mismatch between training and development/test data.

 – Setup:
 • \text{Pseudo-dev:} a 12-hour subset randomly selected from training set.
 • \text{Training-part:} the remaining 57-hour subset from training set.
 • \text{Pseudo-dev and training-part:} utterances are trimmed to 1 second.
 • \text{Front-end:} 108-dim i-vectors extracted from 60-dim voiced MFCCs + \(\Delta + \Delta \Delta \) without CMVN.
 • \text{Back-end:} one-layer MLP with 512 neurons, followed by softmax output.
 • Results (3.6% / 11.8%)

Results and Analysis

• Comparison of \(C_{\text{avg}} \) / EER, with different adversarial weights evaluated on dev-\text{Is} (back-end is simple cosine scoring).

• Comparison of \(C_{\text{avg}} \), with and without unsupervised PLDA adaptation evaluated on both dev-\text{Is} and test-\text{Is} sets (same front-end configuration, \(\lambda = 0.250 \)).

Experimental Setup

• Speaker-invariant BNFs:

 – Input: 40-dim MFCCs w/o cepstral truncation.
 – Speaker labels: obtained from a Czech phone recognizer [4], 135 speakers in total.
 – Speaker labels: obtained from training data, 64 (1 speaker in total).

• DNN configuration: \(M_d \) is a 6-RELU layer TDNN, 2048 neurons per layer (64 neurons in BN layer), layer-wise context: \(-2,-1,0,1,2,0\), \(-1,2,-3,2,-1,0\).

• Unsupervised PLDA adaptation:

 – Out-of-domain PLDA: estimated on training i-vectors and ground-truth labels.
 – In-domain PLDA: estimated on dev-\text{Is} i-vectors and cluster labels.

• AHC: cluster dev-\text{Is} i-vectors to a pre-defined number of clusters ranging in \{10, 50, 100, 200, 500\}.

Conclusions

• Speaker AMTL suppresses speaker variation, which is beneficial to the LR task.

• Unsupervised PLDA adaptation alleviates train-test domain mismatch and contributes significantly to performance improvement on short-duration LR task.

• Effectiveness of PLDA adaptation is insensitive to the number of clusters.

References

ology, Brno, Czech Republic, 2006.