BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION

Xurong Xie1,2, Xunying Liu1,2, Tan Lee1, Shoukang Hu1, Lan Wang2

1Chinese University of Hong Kong
2Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences
Introduction

• DNN based speaker adaptation
 • Feature based: i-vector, speaker code, LDA
 • Model based: linear transform, CAT (basis interpolation), LHUC

• Learning hidden unit contributions (LHUC) learns
 • Contributions of DNN hidden outputs using speaker-dependent (SD) scaling vectors
 • Deterministic parameters
 • Limited amount of adaptation data leads to over-fitting and poor generalization
Contributions of the work

• **Bayesian Learning** of hidden unit contributions (BLHUC)
 • Addressing SD parameter **uncertainty** in standard LHUC
 • Posterior distribution over the LHUC scaling vector is used
 • Variational inference and sampling based approach for estimating posterior parameters

• Two experiment setups to evaluate BLHUC
 • Unsupervised test time speaker adaptation
 • Speaker adaptive training (SAT)

• To the best of our knowledge, this is the first work on using Bayesian learning for DNN speaker adaptation
Learning hidden unit contributions (LHUC)

- Scaling vectors used in element-wise multiplication to modify the DNN hidden node outputs for each speaker
 \[h^{l,s} = \xi(r^s) \otimes \psi(W^T h^{l-1,s} + b) \]

- where \(\xi(r^s) \) is the scaling vector parameterized by \(r^s \)
- \(r^s \) encodes speaker information
- \(\xi(\cdot) = 2\text{sigmoid}(\cdot) \)
Learning hidden unit contributions (LHUC)

• By using LHUC technique, the inference for input feature o_t^s given adaptation data o^s and its alignment c^s is

$$P(c_t^s|o_t^s, o^s, c^s) = \int P(c_t^s|o_t^s, r^s)p(r^s|o^s, c^s)dr^s$$

$$\approx P(c_t^s|o_t^s, \hat{r}^s)$$

• $\hat{r}^s = \arg \max_{r^s} P(r^s|o^s, c^s)$ is the deterministic parameter estimate of r^s

• Assuming we are very confident that this deterministic estimate is reliable

• r^s is often of high dimension in practice, and adaptation data is limited

• Parameter uncertainty leads to overfitting and poor generalization
Bayesian learning of hidden unit contributions (BLHUC)

- From deterministic to **probabilistic** estimate of SD parameter r^s
- Parameter posterior handles uncertainty

$$P(c_t^s | o_t^s, o^s, c^s) = \int P(c_t^s | o_t^s, r^s)p(r^s | o^s, c^s)dr^s$$

- Parameter posterior to be learnt
- Integral non-trivial to compute
- Back-propagation algorithm not directly usable

- Two tricks:
 - Variational lower bound
 - Parameter sampling
Variational estimation for BLHUC parameters

• The lower bound of cross entropy loss on adaptation data is

\[
\text{Loss} = - \log P(c^s|o^s) \\
= - \log \int P(c^s|o^s, r^s) p(r^s) dr^s \\
\leq -\int q_s(r^s) \log P(c^s|o^s, r^s) dr^s + KL(q_s || p)
\]

• where \(KL(q_s || p) = \int q_s(r^s) \log \frac{q_s(r^s)}{p(r^s)} dr^s \) is the KL divergence

• Variational distribution \(q_s(r^s) \) approximates posterior \(p(r^s|o^s, c^s) \)
• Assumed to be Gaussian – to be learnt
Variational estimation for BLHUC parameters

- Both $q_s(r^s)$ and prior $p(r^s)$ are assumed to be Gaussian for simplification
 - $q_s(r^s_d) = N(r^s_d; \mu_{s,d}, \sigma_{s,d}^2)$
 - $p(r^s_d) = N(r^s_d; \mu_{0,d}, \sigma_{0,d}^2)$

Then, the KL divergence can be exactly calculated by

$$KL(q_s || p) = \frac{1}{2} \sum_{d=1}^{D} \left\{ \frac{\left(\mu_{s,d} - \mu_{0,d}\right)^2 + \sigma_{s,d}^2}{\sigma_{0,d}^2} - \log \frac{\sigma_{s,d}^2}{\sigma_{0,d}^2} - 1 \right\}$$

- Hyper parameters of both p and q_s are updatable

- But non-trivial to compute $\int q_s(r^s) \log P(c^s | o^s, r^s) dr^s$ – parameter sampling
Variational estimation for BLHUC parameters

• The BLHUC scaling vector posterior can be parameterized by

\[\theta_s^B = \{ \mu_s, \gamma_s \} \]

• where \(\sigma_s = \exp \gamma_s \)

• \(\theta_s^B \) in the integral term of CE is not directly differentiable and updatable

• Re-parameterization used in sampling over \(\theta_s^B \)

\[
\int q_s(r^s) \log P(c^s | o^s, r^s)dr^s \\
= \int \mathcal{N}(\epsilon; 0, I) \log P(c^s | o^s, \mu_s + \exp(\gamma_s) \otimes \epsilon) d\epsilon \\
\approx \frac{1}{J} \sum_{j=1}^{J} \log P(c^s | o^s, \theta_s^B, \epsilon_j)
\]

• where \(\epsilon_j \) is the \(j \)th Monte Carlo sample drawn from \(N(0,1) \)
Variational estimation for BLHUC parameters

• Then, the gradient of θ_s^B in one data batch can be computed by

$$
\frac{\partial \text{Loss}_m}{\partial \theta_s^B} \approx \alpha \left\{ - \frac{1}{J} \sum_{j=1}^{J} \frac{\partial \log P(c_m^s|o_m^s, \theta_s^B, \epsilon_j)}{\partial \theta_s^B} + \frac{N_{m,s}}{N_s} \frac{\partial \text{KL}(q_s||p)}{\partial \theta_s^B} \right\}
$$

• To be used in back-propagation for estimation of θ_s^B

• $\alpha = \frac{N_s}{N_{m,s}}$ can be absorbed by the learning rate

• The coefficient $\frac{N_{m,s}}{N_s}$ adjusts the weight of KL regularization term
Variational estimation for BLHUC parameters

• We set the sampling number by $J = 1$ during adaptation for efficiency

• Then, the resulting gradient is closely related to DNN adaptation using KL-divergence regularization (Yu, Yao, Su, Li & Seide 2013, “KL-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition”)

• But with additional parameter uncertainty modeled in first term of variational lower bound

$$\frac{\partial \text{Loss}_m}{\partial \theta^B_s} \approx \alpha \left \{ -\frac{1}{J} \sum_{j=1}^{J} \frac{\partial \log P(c^S_m | o^S_m, \theta^B_s, \epsilon_j)}{\partial \theta^B_s} + \frac{N_{m,s}}{N_s} \frac{\partial K L(q_s || p)}{\partial \theta^B_s} \right \}$$

* The gradient form of standard LHUC using ϵ_j
Inference for BLHUC in decoding

• Inference can be directly approximated by Monte Carlo sampling in the test stage

\[p(c^s_t | o^s_t, o^s, c^s) = \int P(c^s_t | o^s_t, r^s) p(r^s | o^s, c^s) dr^s \approx \frac{1}{j} \sum_{j=1}^{J} P(c^s_t | o^s_t, r^s_j) \]

• where \(r^s_j \sim p(r^s | o^s, c^s) \approx q_s(r^s) \)

• A more efficient approximation (used in the paper) is using the mean of the posterior (Normal distribution)

\[\int P(c^s_t | o^s_t, r^s) p(r^s | o^s, c^s) dr^s \approx P(c^s_t | o^s_t, \mathbb{E}[r^s | o^s, c^s]) = P(c^s_t | o^s_t, \mu_s) \]
Different adaptation setups

• Test time adaptation only
 • Standard LHUC estimation
 • Deterministic estimation on adaptation data (Swietojanski & Renals 2016 “Learning hidden unit contributions for unsupervised acoustic model adaptation”)
 • BLHUC estimation
 • SI prior can be separately estimated by training data
 • SI prior can also be zero mean and unit variance for convenience (used in the paper)

• Speaker adaptive training (SAT)
 • Standard LHUC training + standard LHUC test time adaptation
 • Standard LHUC training + BLHUC test time adaptation
 • SI prior mean and variance are computed over training speakers’ LHUC vectors
 • BLHUC training + BLHUC test time adaptation
 • SI prior is updated during training
Experiment setup

• 300 hrs SWBD setup
• Hub5’ 00 for test (SWBD test set + CallHome test set)

• HMMs: 8929 states
• DNN setting
 • Input: 9 successive frames
 • Hidden layer: 2000 nodes, 6 layers, sigmoid
 • Output: 8929 nodes, softmax

• LM: 4-gram, 30,000 words, Fisher + SWBD training

• Features: 80 dimensional f-bank + delta

• Implemented on modified version of Kaldi toolkit and HTK
Result of test time adaptation

• Using all test data as adaptation data
• The BLHUC adapted systems significantly outperformed both the SI baseline system and standard LHUC adapted CE and MPE systems

<table>
<thead>
<tr>
<th>DNN criterion</th>
<th>Test adapt</th>
<th>WER (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SWBD</td>
<td>CallHome</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>15.3</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LHUC</td>
<td>14.6</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHUC</td>
<td>14.2</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>MPE</td>
<td>-</td>
<td>13.4</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LHUC</td>
<td>12.8</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHUC</td>
<td>12.4</td>
<td>23.1</td>
<td></td>
</tr>
</tbody>
</table>

△ 0.5
△ 0.9
Using different amount of adaptation data for CE systems

- On SWBD test set
- BLHUC adapted systems consistently achieved the best performance using different adaptation data

![Graph showing WER with respect to adaptation data amount on SWBD test set. The graph indicates a decreasing trend in WER as the amount of adaptation data increases. The BLHUC adapted system consistently outperforms other systems, with a range of improvement from 0.3 to 0.5.]
Using different amount of adaptation data for CE systems

• on CallHome test set
• BLHUC adapted systems consistently achieved the best performance using different adaptation data

![Graph showing WER w.r.t adaptation data amount on CallHome test set.](image)
Using different amount of adaptation data for MPE systems

• On SWBD test set
• BLHUC adapted systems consistently achieved the best performance using different adaptation data
Using different amount of adaptation data for MPE systems

- On the harder CallHome test set, BLHUC adaptation obtained significantly improvement by even using only one utterance (2 seconds on average).

![Graph showing WER w.r.t adaptation data amount on CallHome test set](image)

- DNN MPE +BLHUC
- DNN MPE +LHUC
- DNN MPE

WER (%)

- 27.0
- 26.0
- 25.0
- 24.0
- 23.0

Adaptation data amount

- 1 utt (2 sec.)
- 10% (15 sec.)
- 25% (33 sec.)
- 50% (70 sec.)
- 100% (140 sec.)

0.9~1.1
Result of SAT

- Using **all test data** as adaptation data for CE systems
- Using BLHUC for both training and testing achieved the best performance

<table>
<thead>
<tr>
<th>DNN criterion</th>
<th>SAT</th>
<th>Test adapt</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SWBD</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>-</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>LHUC</td>
<td>LHUC</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>LHUC</td>
<td>BLHUC</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>BLHUC</td>
<td>BLHUC</td>
<td>12.8</td>
</tr>
</tbody>
</table>

0.6
Conclusion

• **Bayesian learning** of the hidden unit contribution for DNN based speaker adaptation is proposed in the work

• An **efficient variational approximation** for learning LHUC parameter posterior

• BLHUC adaptation consistently outperformed the standard LHUC adaptation, especially on the harder CallHome data set and using limited amount of adaptation data (as minimum as 2 sec of speech)

• To the best of our knowledge, this is the first work on using Bayesian learning for DNN speaker adaptation

• Future work: Bayesian learning of other adaptation techniques