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Introduction
• DNN based speaker adaptation

• Feature based: i-vector, speaker code, LDA

• Model based: linear transform, CAT (basis interpolation), LHUC

• Learning hidden unit contributions (LHUC) learns
• Contributions of DNN hidden outputs using speaker-dependent (SD)  scaling vectors

• Deterministic parameters

• Limited amount of adaptation data leads to over-fitting and poor generalization



Contributions of the work
• Bayesian Learning of hidden unit contributions (BLHUC)

• Addressing SD parameter uncertainty in standard LHUC

• Posterior distribution over the LHUC scaling vector is used

• Variational inference and sampling based approach for estimating posterior parameters

• Two experiment setups to evaluate BLHUC
• Unsupervised test time speaker adaptation

• Speaker adaptive training (SAT)

• To the best of our knowledge, this is the first work on using Bayesian 
learning for DNN speaker adaptation



Learning hidden unit contributions (LHUC)
• Scaling vectors used in element-wise multiplication to modify the DNN 

hidden node outputs for each speaker 

𝒉𝑙,𝑠 = 𝜉 𝒓𝑠 ⊗𝜓 𝑾𝑇𝒉𝑙−1,𝑠 + 𝒃

• where 𝜉 𝒓𝑠 is the scaling vector 
parameterized by 𝒓𝑠

• 𝒓𝑠 encodes speaker information

• 𝜉 ∙ = 2sigmoid ∙



Learning hidden unit contributions (LHUC)
• By using LHUC technique, the inference for input feature 𝒐𝑡

𝑠 given adaptation 
data 𝒐𝑠 and its alignment 𝑐𝑠 is
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𝑠, 𝒓𝑠 𝑝 𝒓𝑠|𝒐𝑠, 𝑐𝑠 𝑑𝒓𝑠

≈ 𝑃 𝑐𝑡
𝑠|𝒐𝑡

𝑠, ො𝒓𝑠

• ො𝒓𝑠 = argmax
𝒓𝑠

𝑃 𝒓𝑠 𝒐𝑠, 𝑐𝑠 is the deterministic parameter estimate of 𝒓𝑠

• Assuming we are very confident that this deterministic estimate is reliable

• 𝒓𝑠 is often of high dimension in practice, and adaptation data is limited

• Parameter uncertainty leads to overfitting and poor generalization



Bayesian learning of hidden unit contributions (BLHUC)

• From deterministic to probabilistic estimate of SD parameter 𝒓𝑠

• Parameter posterior handles uncertainty

𝑃 𝑐𝑡
𝑠|𝒐𝑡

𝑠, 𝒐𝑠, 𝑐𝑠 = න𝑃 𝑐𝑡
𝑠|𝒐𝑡

𝑠, 𝒓𝑠 𝑝 𝒓𝑠|𝒐𝑠, 𝑐𝑠 𝑑𝒓𝑠

• Parameter posterior to be learnt
• Integral non-trivial to compute
• Back-propagation algorithm not 

directly usable

• Two tricks:
• Variational lower bound
• Parameter sampling



Variational estimation for BLHUC parameters
• The lower bound of cross entropy loss on adaptation data is

• where                                                           is the KL divergence

• Variational distribution 𝑞𝑠 𝒓
𝑠 approximates posterior 𝑝 𝒓𝑠|𝒐𝑠, 𝑐𝑠

• Assumed to be Gaussian – to be learnt



Variational estimation for BLHUC parameters
• Both 𝑞𝑠 𝒓

𝑠 and prior 𝑝 𝒓𝑠 are assumed to be Gaussian for simplification

• 𝑞𝑠 𝑟𝑑
𝑠 = 𝑁 𝑟𝑑

𝑠; 𝜇𝑠,𝑑 , 𝜎𝑠,𝑑
2

• 𝑝 𝑟𝑑
𝑠 = 𝑁 𝑟𝑑

𝑠; 𝜇0,𝑑 , 𝜎0,𝑑
2

• Then, the KL divergence can be exactly calculated by

• Hyper parameters of both 𝑝 and 𝑞𝑠 are updatable 

• But non-trivial to compute                                     – parameter sampling



Variational estimation for BLHUC parameters
• The BLHUC scaling vector posterior can be parameterized by

𝜃𝑠
B = 𝝁𝑠, 𝜸𝑠

• where 𝝈𝑠 = exp𝜸𝑠

• 𝜃𝑠
B in the integral term of CE is not directly differentiable and updatable

• Re-parameterization used in sampling over 𝜃𝑠
B

• where 𝝐𝑗 is the 𝑗th Monte Carlo sample drawn from 𝑁 0,1



Variational estimation for BLHUC parameters
• Then, the gradient of 𝜃𝑠

B in one data batch can be computed by

𝜕Loss𝑚

𝜕𝜃𝑠
B ≈ 𝛼 −
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B

• To be used in back-propagation for estimation of 𝜃𝑠
B

• 𝛼 =
𝑁𝑠

𝑁𝑚,𝑠
can be absorbed by the learning rate

• The coefficient 
𝑁𝑚,𝑠

𝑁𝑠
adjusts the weight of KL regularization term



Variational estimation for BLHUC parameters
• We set the sampling number by 𝐽 = 1 during adaptation for efficiency

• Then, the resulting gradient is closely related to DNN adaptation using KL-
divergence regularization (Yu, Yao, Su, Li &  Seide 2013, “Kl-divergence 
regularized deep neural network adaptation for improved large vocabulary 
speech recognition”)

• But with additional parameter uncertainty modeled in first term of variational 
lower bound

𝜕Loss𝑚
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* The gradient form of standard LHUC using 𝝐𝑗



Inference for BLHUC in decoding
• Inference can be directly approximated by Monte Carlo sampling in the test 

stage
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• where 𝒓𝑗
𝑠~𝑝 𝒓𝑠|𝒐𝑠 , 𝑐𝑠 ≈ 𝑞𝑠 𝒓

𝑠

• A more efficient approximation (used in the paper) is using the mean of the 
posterior (Normal distribution)
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𝑠|𝒐𝑡

𝑠, 𝝁𝑠



Different adaptation setups

• Test time adaptation only
• Standard LHUC estimation

• Deterministic estimation on adaptation data (Swietojanski & Renals 2016 “Learning 
hidden unit contributions for unsupervised acoustic model adaptation”)

• BLHUC estimation

• SI prior can be separately estimated by training data

• SI prior can also be zero mean and unit variance for convenience (used in the paper)

• Speaker adaptive training (SAT)
• Standard LHUC training + standard LHUC test time adaptation

• Standard LHUC training + BLHUC test time adaptation

• SI prior mean and variance are computed over training speakers’ LHUC vectors

• BLHUC training + BLHUC test time adaptation

• SI prior is updated during training



Experiment setup
• 300 hrs SWBD setup

• Hub5’ 00 for test (SWBD test set + CallHome test set)

• HMMs: 8929 states

• DNN setting
• Input: 9 successive frames
• Hidden layer: 2000 nodes, 6 layers, sigmoid
• Output: 8929 nodes, softmax

• LM: 4-gram, 30,000 words, Fisher + SWBD training

• Features: 80 dimensional f-bank + delta

• Implemented on modified version of Kaldi toolkit and HTK



Result of test time adaptation

• Using all test data as adaptation data

• The BLHUC adapted systems significantly outperformed both the SI baseline 
system and standard LHUC adapted CE and MPE systems

DNN
criterion

Test
adapt

WER (%)

SWBD CallHome

CE

- 15.3 27.6

LHUC 14.6 25.8

BLHUC 14.2 25.3

MPE

- 13.4 26.8

LHUC 12.8 24.0

BLHUC 12.4 23.1 0.9

0.5



Using different amount of adaptation data for CE systems

• On SWBD test set

• BLHUC adapted systems consistently achieved the best performance using 
different adaptation data

0.3~0.5



Using different amount of adaptation data for CE systems

• on CallHome test set

• BLHUC adapted systems consistently achieved the best performance using 
different adaptation data

0.2~0.6



Using different amount of adaptation data for MPE systems

• On SWBD test set

• BLHUC adapted systems consistently achieved the best performance using 
different adaptation data

0~0.4



Using different amount of adaptation data for MPE systems

• On the harder CallHome test set, BLHUC adaptation obtained significantly 
improvement by even using only one utterance (2 seconds on average)

0.9~1.1



Result of SAT

• Using all test data as adaptation data for CE systems

• Using BLHUC for both training and testing achieved the best performance 

DNN
criterion

SAT
Test

adapt

WER (%)

SWBD CallHome

CE

- - 15.3 27.6

LHUC LHUC 13.2 23.5

LHUC BLHUC 13.0 23.4

BLHUC BLHUC 12.8 22.9

0.6



Conclusion

• Bayesian learning of the hidden unit contribution for DNN based speaker 
adaptation is proposed in the work

• An efficient variational approximation for learning LHUC parameter posterior

• BLHUC adaptation consistently outperformed the standard LHUC adaptation, 
especially on the harder CallHome data set and using limited amount of 
adaptation data (as minimum as 2 sec of speech)

• To the best of our knowledge, this is the first work on using Bayesian 
learning for DNN speaker adaptation

• Future work: Bayesian learning of other adaptation techniques


