Burrows-Wheeler Transform on Purely Morphic Words

Andrea Frosini1, Ilaria Mancini2, Simone Rinaldi2, Giuseppe Romana3, and Marinella Sciortino3

Data Compression Conference 2022
Snowbird, Utah, March 24
Burrows-Wheeler Transform and Run-Length Encoding

- Given a word \(w \), the **Burrows-Wheeler Transform** of \(w \) (\(\text{BWT}(w) \)) is the concatenation of the last characters of the lexicographically sorted rotations of \(w \)

\[
\text{w} = a \ b \ b \ a \ b \ a \ a \ b
\]

\[
\text{BWT} = \\
a \ a \ b \ a \ b \ a \ b \ b \ a \ b
\]

- **Run-length encoding**

\[
\text{BWT}(w) = (b,2) (a,1) (b,1) (a,1) (b,1) (a,2)
\]

- Number of phrases of the rle on the BWT

\[
\rho(w) = \frac{r_{\text{BWT}}(w)}{r(w)}: \text{BWT-clustering ratio} \quad [\text{Mantaci et al., Theoret. Comput. Sci. 2017}]
\]
Morphisms and Purely Morphic Words

Given two alphabets A and B, a **morphism** is a map $\varphi: A^* \rightarrow B^*$ such that $\varphi(uv) = \varphi(u)\varphi(v)$ for all $u, v \in A^*$.

$$\varphi: \begin{cases}
 a \mapsto ab \\
 b \mapsto bc \\
 c \mapsto ac
\end{cases}$$

If $\varphi(a) = au, u \in A^*$, then φ is called **prolongable** on a.

$$\varphi(a) = ab, \quad \varphi^2(a) = abbc, \quad \varphi^3(a) = abbcacbcacacabac, \quad \varphi^4(a) = abbcacbcacbcacacabacacabacabacabacabacabacabacabac...$$

Purely morphic finite words

Purely morphic word

Fixed-point $\varphi^\infty(a) : abbcacbcacabacabacacabacacabac...$
Purely morphic words: Thue-Morse & Fibonacci

\[T = \text{Thue-Morse word} \]

\[F = \text{Fibonacci word} \]
Morphisms & Data Compression

- Some repetitiveness measures have been studied for families of words generated by morphisms
 - LZ77 complexity z [Constantinescu & Ilie, SIAM J. Discret. Math., 2007]
 - Smallest string attractor γ [Schaeffer & Shallit, arXiv, 2020]
 [Kempa & Prezza, STOC 2018]

- NU-systems [Navarro & Urbina, SPIRE 2021] are based on morphisms
\(r_{BWT} \) on purely morphic finite words

- **Question 1**
 - Given a morphism \(\varphi \) such that \(\varphi^\infty(a) \) is a purely morphic word, can we bound \(r_{BWT}(\varphi^i(a)) \)?

- **Question 2**
 - Can we evaluate the BWT-clustering ratio \(\rho(\varphi^i(a)) \)?
So far: \(r_{\text{BWT}} \) on finite Thue-Morse & Fibonacci words

- \([\text{Brlek et al., IWOCA 2019}]

 \(r_{\text{BWT}}(T_i) = 2i \) for any \(i > 0 \)

- \([\text{Mantaci et al., Inf. Process. Lett. 2003}]

 \(r_{\text{BWT}}(F_i) = 2 \) for any \(i > 0 \)
Factor complexity of purely morphic words

- **Periodic fixed-points**
 \[x = \varphi^\infty(a) = v^\omega = vvvv \ldots vvv \ldots \]
 \[uv^\omega = uvvvv \ldots vvv \ldots \]
 \[f_x(n) = \Theta(1) \]

- **Aperiodic fixed-points classification** [Pansiot, ICALP 1984]
 - Let \(x = \varphi^\infty(a) \) be an **aperiodic** purely morphic word.
 - Then, only one of the following is true:
 - \(f_x(n) = \Theta(n) \)
 - \(f_x(n) = \Theta(n \log \log n) \)
 - \(f_x(n) = \Theta(n \log n) \)
 - \(f_x(n) = \Theta(n^2) \)
 - \(r_{BWT}(\varphi^i(a)) \in \Theta(1) \)
 - \(r_{BWT}(\varphi^i(a)) \in ? \)

- **factor complexity** \(f_x(n) \): number of distinct factors of length \(n \) that occur in \(x \).

- \(x \): infinite or finite word
Upper bounds for r_{BWT}

- **Proposition**
 - Let $x = \varphi^\infty(a)$ be an infinite aperiodic word. Then the following upper bounds for $r_{BWT}(\varphi^i(a))$ hold:
 - if $f_x(n) \in \Theta(n)$ then $r_{BWT}(\varphi^i(a)) \in O(i)$;
 - if $f_x(n) \in \Theta(n \log \log n)$ then $r_{BWT}(\varphi^i(a)) \in O(i \log i \log \log i)$;
 - if $f_x(n) \in \Theta(n \log n)$ then $r_{BWT}(\varphi^i(a)) \in O(i^2 \log i)$.

 - [Kempa & Kociumaka, FOCS 2020]
 - [Raskhodnikova et al., Algorithmica 2013]

- In the proof a relationship between r_{BWT} and the measure δ (related to the factor complexity) is also used

- Such a result does not provide a significative upper-bound when $f_x(n) = \Theta(n^2)$
\[f_x(n) = \Theta(n^2) : \text{binary alphabet } A=\{a, b\} \]

\[\varphi: \begin{cases} a \mapsto auab^k \\
 b \mapsto b \end{cases} \quad \text{with} \quad k > 0 \quad \Rightarrow \quad f_{\varphi^\infty(a)}(n) = \Theta(n^2) \]

- There exists \(i_0 \) such that at each step \(i \geq i_0 \), we add a constant number of runs
 - \(r_{BWT}(\varphi^i(a)) \in O(i) \), for any \(i > 0 \)
Binary morphisms

- Summing up, for binary morphisms we have the following bounds for r_{BWT} on binary purely morphic finite words:

<table>
<thead>
<tr>
<th>$f_x(n)$</th>
<th>$r_{BWT}(\varphi^i(a))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>$O(i)$</td>
</tr>
<tr>
<td>$\Theta(n \log \log n)$</td>
<td>$0(i \log i \log \log i)$</td>
</tr>
<tr>
<td>$\Theta(n \log n)$</td>
<td>$0(i^2 \log i)$</td>
</tr>
<tr>
<td>$\Theta(n^2)$</td>
<td>$O(i)$</td>
</tr>
</tbody>
</table>

$x = \varphi^\infty(a)$

- On the other hand, we proved that:

$r(\varphi^i(a)) \in$

- $\Theta(1)$ if $\varphi: \begin{cases} a \mapsto ab^k, & \text{with } k, \ell \geq 1 \\ b \mapsto b^\ell \end{cases}$

- $\Omega(2^i)$ otherwise

Purely morphic word $x = abbbbbb ...$

for all $k, \ell \geq 1$

Exists i_0 such that, for all $i \geq i_0$,

$\rho(\varphi^i(a)) = \frac{r_{BWT}(\varphi^i(a))}{r(\varphi^i(a))} < 1$
Further works and open problems

- Results on binary morphisms have been improved in [Frosini, Mancini, Rinaldi, R. and Sciortino, Logarithmic equal-letter runs for BWT of purely morphic words, Developments in Language Theory (DLT-2022)]
 - $r_{BWT}(\varphi^i(a)) \in O(i)$ for any binary prolongable morphism
 - If $f_{\varphi}(n)$ is $\Theta(n \log \log n)$ or $\Theta(n \log n)$ or $\Theta(n^2)$, then $r_{BWT}(\varphi^i(a)) \in \Theta(i)$

- Open problems
 - Can we extend the bounds on r_{BWT} for all prefixes of the fixed point?
 - Can we extend the tighter upper-bounds for larger alphabet?
Thanks for your attention