

Convolutional Neural Network based Fast Intra Mode Prediction for H.266/FVC Video Coding

The next-generation video compression standard H.266/Future Video Coding (FVC) provides high compression efficiency in terms of the cost of computing the optimal intra mode from 67 modes. We propose an intra mode prediction method based on a convolutional neural network (CNN). An input image set of 20 × 20 blocks is used to train the CNN; the CNN is used to predict the best classes of intra mode direction. The CNN architecture comprises two convolutional layers and a fully connected layer. Compared with the default fast search method in FVC, the proposed method can achieve a 0.033% decrease in Bjøntegaard delta bit rate (BDBR)with only a slight increase in time.

1. Introduction

Data preprocessing and CNN m

1.1 Train Data Preprocessing

1.2 CNN Training Model

We propose a CNN-based intra mode prediction method for H.266/FVC. The proposed method achieves a 0.033% BDBR decrease compared with doFastSearch in JEM 7.0. Although the time saving in JEM is not as great as that of doFastSearch, the method still saves over 93% of encoding time. The proposed method provides an alternative approach for expediting intra mode selection in H.266/FVC. This study test only 16 × 16 blocks with the deep learning methodology. More remarkable results for blocks of different sizes are expected through the application of appropriate neural network architectures Future studies should extend CNN structures to other parts of the coding process that require long search times for prediction, such as inter prediction and motion estimation.

Ting-Lan Lin¹, Kai-Wen Liang², Jing-Ya Huang², Yu-Liang Tu², and Pao-Chi Chang² ¹Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan 2Department of Communication Engineering, National Central University, Taoyuan, Taiwan

	2. Proposed Method
nodel	We propose an intra mode prediction method based on a convolutional neural network (CNN) The CNN architecture comprises two convolutional layers and a fully connected layer
mode arch 3.	Only 16 x 16 blocks with the deep learning methodology were tested by JEM 7.0 in the simulations. Eighteen video sequence categorized into five classes (A to E) were tested using the Intra_main_10 encoding configuration and each sequence was encoded 4 times with different quantization parameters (QP) equal to 22, 27, 32, and 37.
Output	IntraPredLumaQT ori : current block pixel rec: reconstruction block pixel 16 x 16 block? No No No No No No No No No No
iully inected 67	JEM 7.0
cted layer	Overview flowchart of proposed method.

Abstract

► JEM 7.0									
`	is used in the sim	ulations.							
🕞 🕨 🖌 🖌 🖌	n video sequences	s categoriz	zed into five c	lasses	(A to F) are te	ested us	ina the	
Intra m	ain 10 ancodina	configura	tion						
		conjiguru		,		•		0 001	
Batch si	ze is set to 2000 (DIOCKS) WI	th 20,000 epc	ocns an	ia a leo	arning	rate of (J.001. I	
testing,	frames excluded j	from the t	raining set ar	re chos	en to k	e enco	oded.		
► QP: 22	, 27, 32, and 37								
		Class	Sequence	doEastSearch in IEM7 0			Proposed method		
CNN models training		Class	Sequence	BD- BDBR(% (%)	BD-PSNR	BDBR(%)	
CDII	Intel Xeon E5-2630v3			PSNR)	(,,,,		2221(/0)	
	@2.4GHZ * Z	A1	ToddlerFountain	-0.044	0.841	-94.67	-0.064	1.208	
GPU	GTX TITAN X	(4096x2160)							
RAM	256GB DDR4-2133 MHz		TrafficFlow	-0.025	1.361	-94.14	-0.031	1.614	
~		A2	(3840x2160)		4 074	<u></u>	0.050	1 0 0 0	
05	Ubuntu-x64		Rollercoaster	-0.014	1.071	-94.46	-0.050	1.298	
Software language	Python2.7 ` Tensorflow		(4090X2100) Kimono	-0.028	0 907	-01 16	-0 028	0 806	
Data feature	Matlah2015a		ParkScene	-0.028	1 046	-93.87	-0.028	0.830	
extraction tool	IVIatiaDZ015a	В	BasketballDrive	-0.022	1.141	-94.47	-0.022	1.042	
Video coding		(1920x1080)	BQTerrace	-0.056	0.900	-93.66	-0.053	0.852	
	Intel(R) Core(TM) i7-		BasketballDrill	-0.108	2.301	-93.96	-0.103	2.165	
CPU			BQMall	-0.065	1.053	-93.64	-0.063	1.025	
	6800 @3.40 GHz	C	PartyScene	-0.095	1.169	-92.56	-0.088	1.136	
		(832x480)	RaceHorsesC	-0.075	1.142	-93.28	-0.076	1.142	
KAIVI	32.0 G bytes		BasketballPass	-0.080	1.234	-93.93	-0.056	0.928	
Reference		D	BQSquare	-0.132	1.517	-92.65	-0.126	1.484	
ΔT	JEM 7.0 (C/C++)	(416x240)	BlowingBubbles	-0.104	1.700	-93.11	-0.090	1.469	
software			RaceHorses	-0.119	1.611	-93.24	-0.106	1.428	
Video coding tool	Visual Studio 2013,	Έ (1280×720)	FourPeople	-0.076	1.319	-94.27	-0.071	1.232	
			Johnny	-0.051	1.323	-94.24	-0.049	1.244	

4. Conclusions