Cramér–Rao Bound for Line Constrained Trajectory Tracking
Amr Elnakeeb and Urbashi Mitra
Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA
{elnakeeb, ubli}@usc.edu

Prior Work
- Background subtraction (Ebadi & Ones ICIP 2015)
 \[\minimize_{L,S} \|L\|_1 + \lambda_1 \|S\|_1 \quad \text{subject to} \quad X = L + S \]
 \[\minimize_{L,S} \|L\|_1 + \lambda_1 \|S\|_{2,1} \quad \text{subject to} \quad X = L + S \]
- Add trajectory constraint (Elnakeeb & Mitra ISIT 2017)
 Observation: with proper rotation, sparse contribution is rank 1

Solution via ALM
Lin, Chen & Ma, UIUC Technical Report, 2009
- Update step for L:
 \[L_{k+1} = \arg\min_L \mathcal{L}(L, S, R, S_R, M_{S_k}, N_{S_k}, V_{S_k}, R_k) \]
- Similar updates for S, R, and S_R

Cramér–Rao Bound
Adapt RPCA results to include linear constraint (Tang & Nehorai TSP 2011)
\[\text{MSE}_{L,S} \geq \text{new CRB} \leq \text{old CRB} \]
\[f(m, n, N, \min(s, m + n - 1)) \]
\[f(m, n, N, s) \]
\[\min(s, m + n - 1) \] rather than \(s \)

Incorporating linear constraint → tighter CRB
\[f(a, b, c, d) = d - c + \frac{abc}{ab - d} \]
\[N = (m + n)r - r^2; \ m, \ n \ text{are the dimensions,} \ r \ text{is the rank} \]

Our Contributions
- Derive CRB for linear trajectory estimation
- 4 dB improvement over background subtraction and 1.2 dB away from CRB
- Real video: accurate tracking (trajectory not fully linear)
- Performance improvement with addition of “linear” constraint

Optimization
\[\minimize_{L,S,R} \|L\|_1 + \lambda_1 \|S\|_{2,1} + \lambda_3 \|RS\|_1 \]
subject to \(X = L + S \)

Simulations
- LE-ALM: our new method
- EBS-MD: Efficient Background Subtraction via Matrix Decomposition
- BS-MD: Background Subtraction via Matrix Decomposition

Real Data
- Noisy frame (SNR=30 dB)
- Estimation

Acknowledgement
This research has been funded in part by one or more of the following grants: ONR N00014-15-1-2550, NSF CNS-1213128, NSF CCF-1718560, NSF CCF-1410009, NSF CPS-1446901, and AFOSR FA9550-12-1-0215.