Paper No. 162

Depth-First Decoding of Distributed Arithmetic
Codes for Uniform Binary Sources

Bowei Shan, Yong Fang, Chang'an University
Samuel Cheng, University of Oklahoma

Vladimir Stankovic, University of Strathclyde
En-hui Yang, University of Waterloo

UNIVERSITY OF

WATERLOO

@

The UNIVERSITY of OKLAHOMA

1. INTRODUCTION
Distributed Arithmetic Coding (DAC) :

A variant of the arithmetic coding (AC) that can be used to perform
lossless distributed source coding

Open Problems in DAC:
DAC’s decoding complexity
How fast the complexity of the full-search DAC decoder grows with
respect to code
Previous Work (Fang et al. |3, Fang et al. |4, Fang et al. 15) :
Codebook Cardinality Spectrum (CCS)
Hamming distance (H-distance) spectrum (HDS)
Breadth-First Decoder of DAC (BFD)
Drawbacks of BFD:

There is a risk that the optimal path is mis-pruned when its partial metric
is inferior to other paths

To achieve good performance, a large amount of paths must be maintained
during the decoding, which imposes a heavy burden on the decoder

Contribution:
First realization of depth-first the DAC decoder

Experiments show that under the same complexity constraint, the depth-
first decoder (DFD) outperforms the BFD, if the code is not too long and
the Sl quality is not very poor.

2. Review on Breadth-First DAC Decoder

Problem Formulation
Assume that the source emits X" = x", which is encoded at rate R to get
M=m. If R<I, the SI Y"=y" that is correlated with x" is necessary at the
decoder for the lossless recovery of x". On receiving m, the decoder tries
to find the binary vector best matching y" from all solutions to
[2"RI(s™)] = m, where s™ € B". Then DAC decoding can be formulated

as
&' =argmind, (s",y"), st [27I(s")|=m

U]

S
Construction of DAC Tree

We define the following vector
U (8) = (u(s), -, u(s™) @
where i<j. If i=0, the subscript is dropped for simplicity. For boy nodes, i.e.,
ie[0:(n—t)] ,we have

if u(s')e[0:(1-27")) ,node s’ has only O-child

if U(s") €[(1-27),2™) , node s has both 0-child and |-child, which causes

branching;

if u(s')e[27,1) ,node s has only I-child
For ie[(n—t):n),if u(s') €[0,0.5] node s' has only o-child; otherwise, node
s has only |-child. So there is no branching at tail nodes

3. Depth-First DAC Decoder
Principle of Depth-First DAC Decoder:

N 0. N 0.
P e e
N 0
o s )
N O \
o I S S
o/ \ o N
\’ I'

The principle of DFD can be illustrated by above figure

The Sl is assumed to be 000010. The initial pass proceeds along the black full
path 111010. After the initial pass, the decoder records the path-SI H-
distance: d,;, = d;; (100010,111010) = 2. There are 3 fork nodes along the
path 111010, so 3 unequal-length paths (ﬁ, 1111, and 11100) are
suspended, whose end nodes are marked with red color. Note that, branch
picking/storing at fork nodes is based on overall path metrics rather than SI,
so the I-branch is selected at the first fork node, while the path 10 is
suspended. After the initial pass, the decoder selects the best, i.e., with the
greatest overall metric, suspended path 10to trigger a new pass. The second
pass proceeds along the path and is early aborted because the path-SI H-
distance dj; (100010,10010 *) > d,,;, = 2. During the second pass, the path
101 is suspended, whose end node is marked with blue color. Note that, the
memory allocated for the early-aborted path 10010 can be partially released
because the last three nodes (marked with green color) 10010 solely belong
to the path.

Pseudo Code for the DFD of DAC

function depth_first_dac_decoder(ug)
& 4 create_root|ug)
“Illlliu “—n

while the termination condition is not satisfied do
iskull = pass(s. dy)
if isFull = true then
tlin = bst.d
compact_list(spaths, dy;,)
end if
s wakeup_path(spaths)
end while
" trace_back(bst)
end function

4. Experimental Results

Experimental Results Demonstrate How Tail Length, Code Length, and SI
Quality Impact the DFD and the BFD that are Subject to Equivalent
Constraints.

e

e PR
.

SER i IR

5. CONCLUSION AND SUMMARY
This research work presents a depth-first decoding algorithm for distributed
arithmetic codes under uniform binary sources.
The DFD’s complexity can be lowered by enhancing the SI quality: The better SI,
the lower complexity.

Compared with the BFD, the DFD performs better for short and medium code
lengths and in situations when S| quality is not too poor.




