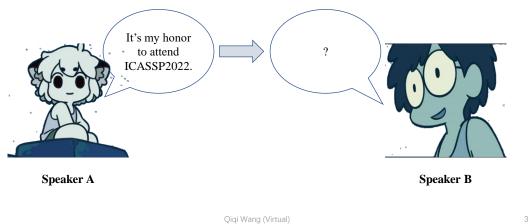


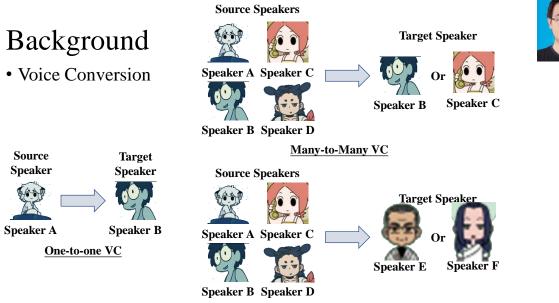
DRVC: A FRAMEWORK OF ANY-TO-ANY VOICE CONVERSION WITH SELF-SUPERVISED LEARNING

Authors: Qiqi Wang, Xulong Zhang, Jianzong Wang, Ning Cheng, Jing Xiao

Speaker: Qiqi Wang (virtual)

10th April 2022

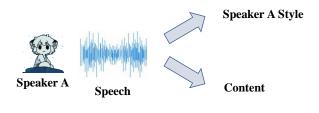

Outline


- Background
- DRVC
- Experiments
- Conclusion

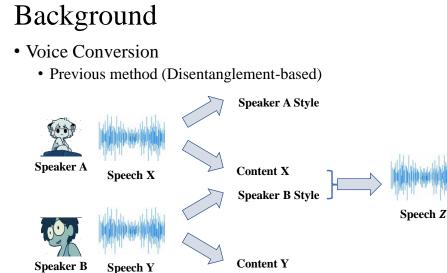
Background

Voice Conversion

Qiqi Wang (Virtual)


Any-to-Any VC

Qiqi Wang (Virtual)

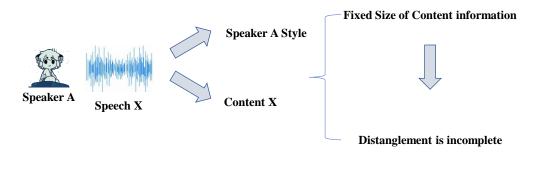

Background

- Voice Conversion
 - Previous method (Disentanglement-based)

Assumption: Speech information consists of speaker style and content information.

Qiqi Wang (Virtual)

Qiqi Wang (Virtual)

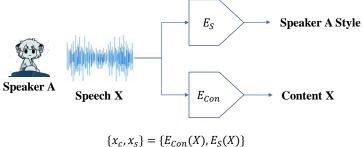


6

Background

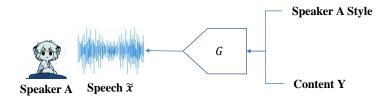
- Voice Conversion
 - Shortages

Qiqi Wang (Virtual)



7

DRVC

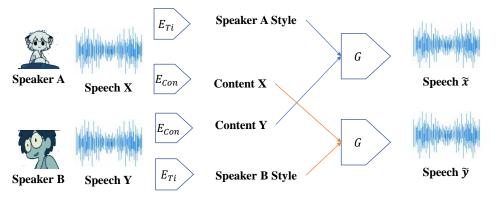


- Two encoders
 - Speaker Style Encoder: E_S
 - Content Encoder: *E*_{Con}

- Speech Distanglement
 - Generator *G*

 $\tilde{x} = G(y_c, x_s) = G(\{E_{Con}(Y), E_s(X)\})$

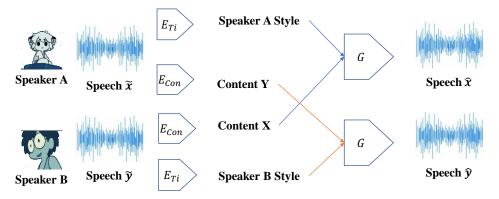
Qiqi Wang (Virtual)



9

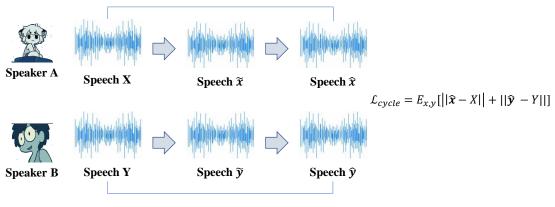
DRVC

• Two Stage Conversion

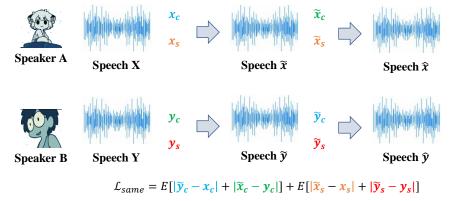

• First Conversion

Two Stage Conversion

Second Conversion


Qiqi Wang (Virtual)

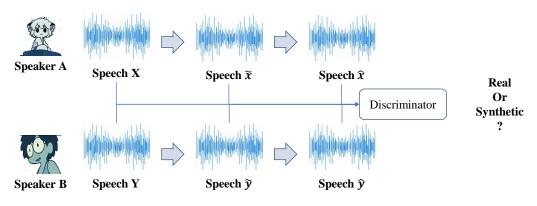
11


DRVC

- Loss Function
 - Cycle Loss

- Loss Function
 - Same Loss

Qiqi Wang (Virtual)


13

DRVC

• Loss Function • Domain Loss $\begin{array}{c} \overbrace{\text{Speaker A}}\\ \overbrace{\text{Speaker A}}\\ \overbrace{\text{Speaker B}}\\ \overbrace{\text{Speaker B}}\\ \overbrace{\text{Speaker B}}\\ \overbrace{\text{Speaker B}}\\ \overbrace{\text{Speaker Y}}\\ \overbrace{\text{Speaker Y}}\\ \overbrace{\text{Speaker ID}}\\ \overbrace{\text{Speaker ID}}\\$

- Loss Function
 - Adversarial Loss

Qiqi Wang (Virtual)

15

Experiments

• Data

• VCC2018

Sources Speakers		
VCC2SF1	VCC2SM1	
VCC2SF2	VCC2SM2	
VCC2SF4	VCC2SM4	
VCC2TF2	VCC2TM2	

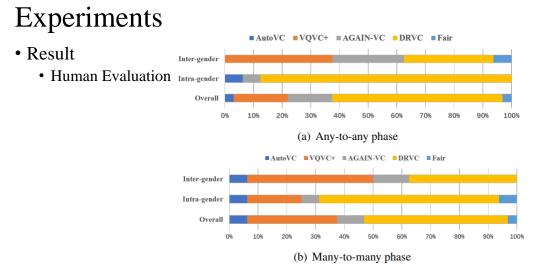
Target Speakers		
VCC2SF4	VCC2SM4	
VCC2TF2	VCC2TM2	

Many-to-Many VC

Target Speakers		
VCC2SF3	VCC2SM3	
VCC2TF1	VCC2TM1	
Arres to Arres VC		

Any-to-Any VC

Experiments


• Result

• MCD & MOS

Table 1. Comparison of different models in any-to-any and		
many-to-many. \Downarrow means lower score is better, and \Uparrow means		
bigger score is better.		

Methods Any-to-A		o-Any Many-to-Many		to-Many
	MCD ↓	MOS↑	MCD↓	MOS↑
Real VQVC+ AutoVC AGAIN-VC	7.47 ± 0.07 7.69 ± 0.21 7.42 ± 0.19	$\begin{array}{c} 4.65 \pm 0.12 \\ 2.52 \pm 0.42 \\ 2.95 \pm 0.56 \\ 2.45 \pm 0.34 \end{array}$	7.78 ± 0.07 7.61 ± 0.17 7.64 ± 0.21	$\begin{array}{c} 4.66 \pm 0.21 \\ 2.62 \pm 0.22 \\ 3.17 \pm 0.65 \\ 2.47 \pm 0.58 \end{array}$
DRVC	$\textbf{7.39} \pm \textbf{0.05}$	$\textbf{3.32} \pm \textbf{0.36}$	$\textbf{7.59} \pm \textbf{0.04}$	$\textbf{3.51} \pm \textbf{0.52}$

Qiqi Wang (Virtual)

Qiqi Wang (Virtual)

Experiments

• Result

• Ablation experiments

Table 2.	Ablation experiments on the proposed model.	₩
means lov	wer score is better.	

Model	MCD↓
DRVC w/o Cycle Loss	7.68 ± 0.26
DRVC w/o Identity Loss	7.63 ± 0.14
DRVC w/o Domain Loss	7.72 ± 0.12
DRVC w/o Voice Same Loss	7.75 ± 0.32
DRVC w/o Content Same Loss	7.50 ± 0.32
DRVC w/o Adversarial Loss	7.72 ± 0.35
DRVC	$\textbf{7.39} \pm \textbf{0.05}$

Qiqi Wang (Virtual)

Conclusion

Contribution

- We propose a end-to-end framework, DRVC, to address the untangle overlapping problem without circumspection choose the content sizes.
- Both the subjective and objective results show our model has better performance.

Thanks for you listening

Acknowledge & Notes:

- All anime character images are from the 'The Legend of LUOXIAOHEI'.
- The presentation speech video, including the voice and personal video, is auto synthesis by PingAn Technology Co. Ltd.