Overview

- Many audio fingerprinting algorithms rely on spectral peaks as unique features with which to identify an audio signal.
- Spurious spectral peaks often arise in acoustic audio fingerprinting applications due to speech, humming and/or singing.
- Independently, spurious peaks are largely indistinguishable from desirable peaks, however, groups of these peaks often have distinctly different features from the audio of interest, e.g., music.
- By searching for outliers in pitch contour characteristics, spurious peaks may be identified and removed prior to any fingerprint processing.
- This technique is more efficient than typical audio source separation algorithms that might address the same issue (such as non-negative matrix factorization or deep learning based approaches).

Contour Tracing

Contour tracing is performed analogous to previous literature with the additional consideration of phase.

Given a Fourier Transform:

\[X[k, m] = \sum_{n=-M}^{W} x[n] \exp(-j2\pi \frac{k(n-m)}{W}) \]

The following quantities are calculated for each bin:

- **Magnitude:**
 \[A_{k,m} = \frac{1}{W} \| X[k, m] \| \]

- **Frequency:**
 \[\omega_{k,m} = 2\pi \frac{k(n-m)}{W} \]

- **Phase:**
 \[\phi_{k,m} = \angle X[k, m] + \angle W[\omega_{k,m}] \]

Peaks with low magnitude or inconsistent frequency are filtered out whilst the remainder are grouped into contours and harmonic sets ensuring the following between time frames:

- **Magnitude Continuity:**
 \[\frac{A_{k,m}}{A_{k,m+1}} > \Delta_A \]

- **Frequency Continuity:**
 \[|\omega_{k,m} - \omega_{k,m+1}| < \Delta_f \]

- **Phase Continuity:**
 \[\min \left| (\exp(j2\pi \Delta_f) + \exp(-j2\pi \Delta_f)) \right| < \Delta_p \]

System Overview

Four stages:

1. STFT
2. Spectral Peak Calc.
3. Contour Tracing
4. Outlier Detection
5. Complex Spectral Sub.
6. ISTFT

Outputs:

- Spectrogram
- Spectral Peaks
- Spectral Contours
- Spectral Contour
- Noise Reduced Spectrogram

Contour Characteristics

While the objective is not to improve listening quality of the audio, it can be seen that the spectrum better represents the speech free audio spectrum by the Normalized Covariance Measure (NCM):

\[\text{Difference in NCM} = \frac{\text{SNR} - \text{SNR}_{\text{reference}}}{\text{SNR}_{\text{reference}}} \]

Harmonic Noise Reduction (HNR) improves performance in the presence of speech noise but maintains performance with wideband noise sources like babble.

Results

A significant number of previously unrecognized fingerprints are now recognizable using Gracenote’s latest fingerprinting algorithm thanks to Harmonic Noise Reduction (HNR).