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ABSTRACT

This paper studies the problem of discrete super-resolution.
Existing stability guarantees rely on the fact that certain sep-
aration conditions are satisfied by the true support. However,
such structural conditions have not been exploited in the cor-
responding algorithmic designs. This paper proposes a novel
Bayesian approach based on the model aggregation idea that
can generate an exact sparse estimate, and maintain the re-
quired structures of the support. The proposed method is
implemented within the MCMC framework and empirically
provides better support recovery than available algorithms.
Index Terms — Exact support recovery, discrete super reso-
lution, model aggregation, MCMC algorithm

1. INTRODUCTION

The problem of super-resolution finds important applications
in a wide range of areas including imaging [1-3], astron-
omy [4] and radar [5], to name a few. The fundamental goal is
to estimate the signal of interest from its noisy low-frequency
measurements. In this paper, we adopt the basic assumption
that the target signal is sparse and aim to exactly recover the
support. There are two lines of work differing on whether the
support lies on a pre-defined grid. We take the on grid model
in [6-9] instead of the gridless one which always induces spu-
rious spikes to the best of authors’ knowledge [10-14].

The discrete super-resolution problem belongs to the
classic underdetermined linear regression [15] but with a de-
terministic Fourier-type measurement matrix. In statistical
literature, recovering the support also refers to the problem of
variable selection or model selection [16]. A large number of
methods have been proposed in relevant contexts from both
frequentist and Bayesian viewpoints. Existing frequentist
methods impose deviation constraints like basis pursuit [17],
or include structural penalizations like LASSO [18], or apply
the maximum likelihood principle like SPICE [19].

The Bayesian approaches, on the other hand, can be
roughly classified into two categories [20]: spike-and-slab
priors (two-groups model) and global-local shrinkage priors.
The family of spike-and-slab priors places a discrete mixture
of a point mass at zero and an absolutely continuous density
on each coordinate (grid point). The global-local shrinkage
priors instead place absolutely continuous shrinkage priors on
the whole parameter vector to promote sparsity. The success-
ful Bayesian methods such as sparse Bayesian learning [21]
and approximate message passing [22] fall into the second
category by simultaneously shrinking all the coordinates.

From either perspective, general stability analyses require
certain properties (e.g. RIP, coherence) of the measurement
matrix [15, 23, 24], which do not hold for the deterministic
Fourier-type matrix in general [25]. Available performance
analyses of super-resolution instead assume the true support
satisfys certain separation conditions [7, 8, 13, 14,30]. How-
ever, the separation conditions are not considered in the algo-
rithmic designs. Thus, the obtained estimates generally do not
satisfy the separation condition without post-processing [17].

To bridge this gap between theoretical and numerical
sides of the super-resolution research, we propose to apply
the idea of model aggregation, and implement a Monte-Carlo
Markov Chain (MCMC) algorithm for exact sparse recov-
ery. In particular, we adopt the methodology in [26-29] that
all possible supports are assigned to proper priors and the
final estimate is an aggregation of primitive estimates with
respect to each support. Note that both the spike-and-slab and
global-local shrinkage priors will not work here as they lack
the ability to differentiate the supports and accommodate the
desired separation constraint. Though the method is by nature
combinatorial as it considers all individual supports, the pro-
posed MCMC algorithm is empirically efficient and provides
better support recovery compared to existing approaches.

2. PROBLEM FORMULATION

To set up the super-resolution problem, we adopt the follow-
ing widely used model [7, 8,30]. In particular, we acquire a
noisy low-frequency sketch of a sparse vector x* € CV as

y=Ax* +w" (1)

where the support S* of x* is of size s, and w* € CM is the
additive noise. The low-pass procedure is characterized by a
partial DFT matrix A € CM*" without normalization:

mn

[Alpn =%, —fo<m<f,0<n<N-1

where f. denotes the cut-off frequency. Our goal is to obtain
an estimate X of x* from the noisy measurement y.

3. STRUCTURAL SUPER-RESOLUTION VIA
MODEL AGGREGATION

3.1. A model aggregation setting for super-resolution

To fulfill a possible pedagogical purpose, we first state the
basic setting of model aggregation in statistical inference lit-
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erature [27]. Suppose we observe {Y;, X;}M | such that

where f : X — R is an unknown function to be estimated
and ¢; are independent random variables. In the context of
model aggregation, we try to approximate f by linearly com-
bining the elements in a given functional dictionary F =
{f1,+, fr} as follows

L
AX) =Y NA(X), vXex
=1

To apply the aggregation idea to the super-resolution problem,
we have to properly define the dictionary F as well as the
weights A to promote desired support structure.

An intuitive construction of the functional dictionary F
for sparse super-resolution is to associate each candidate f;
with one possible support. To be precise, a sparse pattern is
a binary vector p € P = {0,1}" [28]. The sparsity of a
particular pattern p is denoted by |p|, and the cardinality of
P is 2V, For each sparse pattern p, we have the freedom
to define the candidate model f to reflect certain structural
prior information [29,31]. In this paper, we simply exploit
the ordinary least squares (OLS) to construct f. In particular,
for each sparsity patter p;, we define f; as

fi = 2, = argmin |y — Az )
ZEZ)|
The feasibility set is given by

Z 2 {z0p,ze CN}cCV

where ( denotes the element-wise (Hadamard) product to en-
force the sparse pattern. If the solution of (2) is not unique,
we will take the one of least norm. We can impose other
structures such as sign [8] and shape [32] constraints on Z;.

After constructing the dictionary £, the next step is to
determine the combination coefficients X such that we can
simultaneously promote the sparsity of X and maintain the
desired separation of the support.

3.2. Sparse exponential weighting of OLS estimates

One natural way to compute A is to apply the OLS as [27]

S .
A (A) = argminly — Afxll2
AEA

where the feasibility set A can take many forms depending on
the applications. For example, we can set A = R or

L
AiAL_{)\eRL:Al>O,ZAl—1} 3)
=1

The major disadvantage of coefficients A” S is that we cannot
guarantee the desired separation nor promote the sparsity of
the aggregate estimate. We propose to use the following co-
efficients for exponential weighting of F = {f;}1, [27-29]

S\EW . exp(—Mfl/ﬂ)m
l T L -
21 exp(—M7y/B)my,

“

where 7, = [y — A%|3 is the residual corresponding to the

candidate model f;. (3 is a tuning parameter and {m}lL=1 is a
customized prior on the set of primitive estimates F.

The reason for using the above defined exponential
weighting coefficients is made clear by noting that [27]

<EW B L Ak
_ . N log 2
A = arg neuri (lzlx\lrl+ ngl)\k og k) (@)

where Z£=1 A log f;—z is the Kullback-Leibler divergence be-

tween A and 7. Thus, the exponential weighting aims to bal-
ance the data fitting error and the fidelity to the priors.
Obviously, the prior 7 plays an important role in enforc-
ing certain structures of the support. For instance, we can
simply set m; = 0 if the sparse pattern p; does not satisfy the
separation condition. However, besides the separation, we
also want to promote the sparsity of the resulting estimate X.
One such prior 7w to promote sparsity is given by [27-29]

1 ‘pll |pl| ﬁcp
m=1{H\22L) » PIETE (6)
0, otherwise

where P is a subset of P that satisfys desired structures (e.g,
separation), and H is a normalizing factor to make 7 a valid
prior on F. As argued in [28], H < 4 with such construction.

Without losing generality, for now we assume P = P and
show how the construction (6) promotes sparsity. Plug it back
into (5), we have

=1 k=1
B L 2eL
+—log H + Ak|pr|log — @)
M ,;1 P Pl

Note that —log L < Z£=1 Arlog A\, < 0 on simplex
AL, the constructed coefficients X approximately mini-
mize the following regularized problem with prior in (6)
2el

3
|pz\

L
i AT+ A 1
lniy I; 171+ Ai|pi| log
Compared (8) with the ideal £y norm regularized regression
i — Ax|% + \[x
min |y l2 + Allxllo

We can clearly see that the model aggregation based sparse
estimation implicitly balances the data fitting error and the
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sparsity. Additionally, the proposed method has a finer view
of the problem in the sense that we treat each pair of residual
7 and sparsity |p;| individually. Again, more structural con-
straints on the support can be imposed by selecting a proper

subset of candidates P in the aggregation.

4. NUMERICAL IMPLEMENTATION VIA MCMC

<EW
Using the exponential weighting coefficients A defined in
(4), we have the aggregate estimate given by

Zpleﬁ 2[ exp(fol/ﬂ)m

_ \EW ¢ _
fsew Z)‘l f Zpleﬁexp(—]fol/ﬂ)m

pieP

Note that the exact computation of X requires computing OLS

for all the sparse patterns in P. This will suffer great compu-
tational complexity if we have a fine grid that N » 1. Thus,
an implementable algorithm is necessary to apply the model
aggregation idea to the super-resolution applications.

As in [28,29], we propose to find an approximate aggre-
gate solution by implementing a proper Monte-Carlo Markov
Chain. Different from prior work, we will have to adaptively
design the transition and proposal distribution to enforce the
structures of P.

The use of MCMC is motivated by the fact that the de-
sired aggregate solution f5sw is the expectation of a random
variable Z; with probability mass

v o exp(—M7y/B)m, pEP ©)
where we ignore the normalizing factor for convenience. This
distribution can be designated as the stationary distribution of
a MCMC generated by the classic Metropolis-Hastings (MH)
algorithm [33]. Under the setting of super-resolution, the pro-
posed MH algorithm is defined on the L-hypercube graph of
which each vertex corresponds to a sparse pattern.

The proposed algorithm follows the common MH frame-
work and one of our contributions lies in the proposal distri-
bution. For completeness, the high-level numerical procedure
of MH is summarized in Algorithm 1.

As in [28,29], we approximate the desired aggregate so-
lution fgew by

1 To+T
== > % (10)

t=To+1

where Ty, T are user-defined parameters to approximate the
exact expectation under certain time complexity.

4.1. Structure-aware proposal distribution choice

In [28,29], the authors do not impose any additional structural
constraints on P that it contains all the possible support of
sizes ranging from 0 to rank(A). In this paper, our goal is to
maintain the separation among the spikes for a more accurate
and robust exact sparse recovery.

The key idea to design the proposal distribution ¢(-|p¢) is

to prune the vertices on the hypercube that are not in P. At

Algorithm 1: Metropolis-Hastings algorithm

Select initial sparse pattern p = 0 € RY;

for 1=1,2,... do

1. Generate a tentative move on P via sampling
proposal distribution: p; ~ q(-|pt)

2. Compute the acceptance probability:
r(pt, Pt) = min(Z—i, 1), where v, v; are
computed as (9) for p¢, p; respectively

3. Generate a random variable
u ~ Uniform(v; 0, 1)

4. if u < r then
| Accept the proposal: p;y1 < Py;

else
| Reject the proposal: piy1 < P¢;

end

5. Compute the Z;, 1 with respect to p;41

end

any iteration with sparse pattern|p; € P, instead of randomly
selecting an adjacent neighbor as in [28,29], we first exclude

the invalid candidates in 73\7S by temporarily freezing the co-
ordinates within the neighborhood of p; of which the size is
determined by the desired separation. Next, we randomly se-

lect a neighboring vertex in P.In particular, we take uniform
distribution to search for the next valid move.

5. SIMULATION

In this section, we conduct extensive numerical experiments
to demonstrate the superior performance of the proposed
method compared to existing algorithms. Following the mea-
surement model (1), the entries of signal x* and noise w* are
generated as complex Gaussian random variables. We require
that the true support satisfies the separation condition and
the normalized mutual distances are no smaller than a pre-
determined value A € (0, 1). The tuning parameter 3 in (4) is
set to be four times the entry-wise noise power o'2,. The num-
ber of iterations of the proposed method is chosen to be 3000
with T, = 2000 and 7" = 1000 in (10). We consider three
competing frequentist/Bayesian algorithms: the LASSO [18],
the Square-root Lasso (equivalent to SPICE with single snap-
shot) [19, 34] and the SBL [21]. Given an estimate X, we
claim a success if the support is exactly recovered without
any post-processing. We will also compare the algorithms

s [F=x"]h

with respect to the normalized estimation error € = =T

In sample runs, the largest and smallest amplitudes of x* are
denoted by xyax, Tmin respectively.

We first show two sample runs in Fig. 1 and Fig. 2 under
the settings that the sources are close or have sharp amplitude
contrast. In both cases, the proposed method can provide ex-
act sparse estimates while the other algorithms fail.

As only the proposed method can give sparse resolution,
we show in Fig. 3 the empirical probability of success in
terms of support recovery. We control the separation of two
equal spikes and the results show the fact that the larger the
separation, the higher the chance we can exactly locate the
spikes. In Fig. 4, we compare the averaged normalized error
of the four algorithms. It can be seen that the larger the con-
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Fig. 1. Sample run of close sources. Blue spikes are true
signals and red spikes are the estimates. N = 500, M =
200,s =3, A = 0.004, T1in, = 1, gz = 1.4, 0, = 0.1.
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Fig. 2. Sample run of sharp amplitude contrast. N =
500, M = 200, A = 0.04,5s = 3, Zmin = 0.2, Tmax = 1.4,

ow = 1.

trast in amplitudes is, the larger the estimation errors are. The
proposed method is by nature combinatorial and we study its
temporal complexity in Fig. 5. All four algorithms are run on
a Dell desktop with Core i7-9700. The computational com-
plexity of the proposed algorithm is comparable to others but
it can provide better estimates as shown in earlier simulations.
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Fig. 3. Probability of exact support recovery. N = 500, s =
3, Tmin = 1,Zmax = 1, 0 = 0.1. Averaged over 100 runs.
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Fig. 4. Averaged normalized error ¢ as a function of
Tmin/ZTmax- N = 500, M = 200, A = 0.03, s = 3, 0y, = L.
Averaged over 50 runs.
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Fig. 5. Time complexities of four algorithms as functions of
N. M =200,A =0.03,s = 3,Zmin = 1,Tmax = 1,04 =
1. Averaged over 50 runs.

6. CONCLUSION

We propose a novel Bayesian discrete super-resolution algo-
rithm based on the idea of model aggregation. By selecting
priors over the possible supports, the proposed method re-
sembles the frequentist sparse recover method with £y norm
based regularization. To efficiently implement the Bayesian
approach, we exploit the MCMC framework with a cus-
tomized proposal distribution to enforce the desired structural
constraint like the separation condition in prior work. The
numerical results demonstrate the advantages of the proposed
method over other widely used methods in literature.

7. REFERENCES

[1] S.C.Park, M. K. Park and M. G. Kang, “Super-resolution
image reconstruction: a technical overview”, IEEE Sig-
nal Processing Magazine, vol. 20, no. 3, pp. 21-36, May
2003.

[2] J. Lindberg, “Mathematical concepts of optical superres-
olution”, J. Opt, vol. 14, no. §, July 2012.

[3]1 H. Greenspan, “Super-Resolution in Medical Imaging”,
The Computer Journal, vol. 52, no. 1, Jan. 2009.

[4] K. G. Puschmann and F. Kneer, “On super-resolution in
astronomical imaging”, Astronomy and Astrophysics, vol.
436, no. 1, pp. 373-378, June 2005.

[5] R. Heckel, V. I. Morgenshtern and M. Soltanolkotabi,
“Super-resolution radar”, Information and Inference: A
Journal of the IMA, vol. 5, no. 1, pp. 22-75, March. 2016.



[6] D.L. Donoho, “Superresolution via sparsity constraints”,
SIAM J. Math. Anal., vol. 23, no. 5, pp. 1309-1331, Sep.
1992.

[7]1 E. J. Candés and C. Fernandez-Granda, “Towards a
mathematical theory of super-resolution”, Commun. Pure
Appl. Math., vol. 67, no. 6, pp. 906-956, June 2014.

[8] V. I. Morgenshtern and E. J. Candes, “Super-Resolution
of Positive Sources: the Discrete Setup”, SIAM J. Imag-
ing Sciences, vol. 9, no. 1, pp. 412-444, 2016.

[9] T. Bendory, “Robust Recovery of Positive Stream of
Pulses”, IEEE Transactions on Signal Processing, vol.
65, no. 8, pp. 2114-2122, April 2017.

[10] G. Tang, B. N. Bhaskar and B. Recht, “Near minimax
line spectral estimation”, IEEE Trans. Inf. Theory, vol.
61, no. 1, pp. 499 -512, Jan. 2015.

[11] Z. Yang and L. Xie, “On gridless sparse methods for line
spectral estimation from complete and incomplete data”,
IEEE Transactions on Signal Processing, vol. 63, no. 12,
pp- 3139-3153, June 2015.

[12] Z. Yang, L. Xie and C. Zhang, “A discretization-free
sparse and parametric approach for linear array signal

processing”, IEEE Transactions on Signal Processing,
vol. 62, no. 19, pp. 4959 - 4973, Oct. 2014.

[13] W. Li, W. Liao and A. Fannjiang, “Super-resolution
limit of the ESPRIT algorithm”, IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4290 -4308, July. 2013.

[14] D. Batenkov, G. Goldman and Y. Yomdin, “Super-
resolution of near-colliding point sources”, arXiv:
1904.09186V1, April 2019.

[15] S. Foucart and H. Rauhut, “A Mathematical Introduc-
tion to Compressive Sensing”, Birkhduser/Springer, New
York, 2013.

[16] C. R. Rao and Y. Wu, “On model selection”, IMS Lec-
ture Notes-Monograph Series, vol. 38, 2001.

[17] H. Qiao and P. Pal, “Guaranteed Localization of More
Sources than Sensors with Finite Snapshots in Multi-
ple Measurement Vector Models Using Difference Co-

Arrays”, IEEE Transactions on Signal Processing, vol.
67, no. 22, pp. 5715-5729, Nov. 2019.

[18] P. Pal and P. P. Vaidyanathan, “Pushing the limits of
sparse support recovery using correlation information”,

IEEE Transactions on Signal Processing, vol. 63, no. 3,
pp. 711-726, Feb. 2015.

[19] P. Stoica, P. Babu and J. Li, “SPICE: A sparse
covariance-based estimation method for array process-

ing”, IEEE Transactions on Signal Processing, vol. 59,
no. 2, pp. 629-638, Feb. 2011.

[20] A.Bhadra, J. Datta, N. G. Polson and B. Willard, “Lasso
meets horseshoe: a survey”, Statistical Science, vol. 34,
no. 3, pp. 405-427, 2019.

[21] D.P. Wipf and B. D. Rao, “An empirical Bayesian strat-
egy for solving the simultaneous sparse approximation

problem”, IEEE Transactions on Signal Processing, vol.
55, no. 7, pp. 3704-3716, July 2007.

[22] D. L. Donoho, A. Maleki and A. Montanari, “Message
passing algorithms for compressed sensing: 1. motivation
and construction”, Proceedings of IEEE Information The-
ory Workshop on Information Theory , Cairo, 2010.

[23] S. van de Geer, “Estimation and Testing Under Spar-
sity”, Lecture Notes in Mathematics 2159, Springer,
2016.

[24] 1. Castillo, J. Schmidt Hieber and A. Van Der Vaart,
“Bayesian linear regression with sparse priors”, The An-
nals of Statistics, vol. 43, no. 5, pp. 1986-2018, 2015.

[25] H. Qiao, “A universal technique for analysis discrete
super-resolution algorithms”, IEEE Signal Processing
Letters, vol. 27, pp. 1829-1833, 2020.

[26] D. Dai, P. Rigollet and T. Zhang, “Deviation optimal
learning using greedy Q-aggregation”, The Annals of
Statistics, vol. 40, no. 3, pp. 1878-1905, 2012.

[27] A. B. Tsybakov, “Aggregation and minimax optimality
in high-dimensional estimation”, Proceedings of Interna-
tional Congress of Mathematicians (Seoul, 2014), 3:225-
246, 2014.

[28] P. Rigollet and A. B. Tsybakov, “Exponential screening
and optimal rates of sparse estimation”, The Annals of
Statistics, vol. 39, no. 2, pp. 731-771, 2011.

[29] P. Rigollet and A. B. Tsybakov, “Sparse estimation by
exponential weighting”, Statistical Science, vol. 27, no.
4, pp- 558-575, 2012.

[30] E. J. Candes and C. Fernandez-Granda,“Super-
resolution from noisy data”, J. Fourier Anal. Appl., vol.
19, no. 6, pp. 1229-1254, 2013.

[31] P. C. Bellec, “Optimal bounds for aggregation of affine
estimators”, The Annals of Statistics, vol. 46, no. 1, pp.
30-59, 2018.

[32] S. van de Geer and P. Biihimann, “On the conditions
used to prove oracle results for the Lasso”, Electronic
Journal of Statistics, vol. 3, pp. 1360-1392, 2009.

[33] C. Robert and G. Casella, “Monte Carlo Statistical
Methods”, Springer, New York, 2004.

[34] H. Qiao, “A universal technique for analysis discrete
super-resolution algorithms”, IEEE Signal Processing
Letters, vol 28, pp. 543-547, 2021.



