					Conclusions
00	000	0000000000	0	00	000

Epoch Estimation from a Speech Signal using Gammatone Wavelets in a Scattering Network

Pavan Kulkarni¹, Jishnu Sadasivan¹, Aniruddha Adiga², and Chandra Sekhar Seelamantula¹ css@iisc.ac.in

¹Department of Electrical Engineering, Indian Institute of Science, Bangalore, India

IIS

²Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, USA

> UNIVERSITY VIRGINIA

May 4-8, 2020

45th IEEE Int. Conf. on Acoustics, Speech, and Signal Processing

Introduction Literature	Proposed Method	Experimental Validation		Conclusions
000 000	0000000000	0	00	000

Contents

1 Introduction

Proposed Method

Experimental Validation

Introduction - Speech production

► The figure shows human speech production system.

Figure 1: The human speech production system.

Picture credits: Wikipedia

Introduction ○●	Proposed Method		Conclusions

Introduction - Epochs

Extracting epoch locations in a speech signal plays an important role in many applications.

- Epochs are glottal closure instants.
- ▶ It is used in describing the voice characteristics¹.
- Rao et al.² and Rudresh et al.³ used epochs as pitch markers in time/pitch scaling.
- Epochs serve as pitch markers in applications such as voice conversion and text-tospeech synthesis.
- ► Yegnanarayana et al.⁴ used epoch locations to estimate the time-delay between speech signals.

¹Teixeira et al., *Procedia Technology*. 2013.

²Rao and Yegnanarayana, *IEEE TASLP*, 2006.

³Rudresh et al., arXiv preprint arXiv:1801.06492. 2018.

⁴Yegnanarayana et al., *IEEE TASLP*. 2005.

	Literature ●00	Proposed Method		Conclusions
Literature	Roview			

- Murthy and Yagnanarayana⁵ introduced a technique called zero-frequency resonator (ZFR) for epoch estimation.
- Drugman et al.⁶ introduced an algorithm that uses residual excitation and meanbased signal (SEDREAMS).
- Both ZFR and SEDREAMS require prior knowledge of the pitch period for window selection and are robust to noise.

⁵Murty and Yegnanarayana, *IEEE TASLP*. 2008. ⁶Drugman et al., *IEEE TASLP*. 2012.

	Literature 0●0	Proposed Method		Conclusions 000
Literature				

- ▶ Prathosh et al.⁷ introduced a dynamic plosion index (DPI) to determine epcoh locations.
- Shenoy and Seelamantula⁸ used spectral zero-crossing rate (SZCR) to determine epochs.
- Both the technique show robust performance even with telephone channel speech compared to ZFR and SDREAMS.

⁸Shenoy and Seelamantula, *IEEE Transactions on Signal Processing*. 2015.

⁷Prathosh et al., *IEEE TASLP*. 2013.

	Literature 00●	Proposed Method		Conclusions
This Work				

Figure 2: Block diagram of the proposed method.

- The figure shows overall block diagram of the proposed method in a scattering network⁹ framework.
- In this work, we consider time-frequency coefficients of a speech signal obtained by using a Gammatone wavelet filterbank (GWFB).
- The corresponding time-frequency representation is processed using a lowpass filter followed by max-pooling.
- The local maxima after max-pooling correspond to epochs.

⁹Bruna and Mallat, *IEEE TPAMI*. 2013.

		Proposed Method			Conclusions
00	000	000000000	0	00	000

► Johannesma et al.¹⁰ introduced the gammatone function, and it is defined in the time domain as

$$g(t) = t^{N-1} e^{-\alpha t} \cos(\omega_o t) u(t), \qquad (1)$$

where α is the bandwidth parameter, ω_0 is the center frequency, u(t) denotes the unit-step function, and N is the order of the wavelet.

• We consider the quadrature approximation $g_q(t)$

$$g_q(t) = t^{N-1} e^{-\alpha t} e^{j\omega_o t} u(t).$$
⁽²⁾

¹⁰ Johannesma, Proceedings of the Symposium on Hearing Theory. 1972.

		Proposed Method			Conclusions
00	000	000000000	0	00	000

The Gammatone wavelet¹¹ is constructed by taking the derivative of the Gammatone function, and its Fourier transform is given by

$$\widehat{\psi}^{(1)}(\omega) = j\omega \,\widehat{g}_q(\omega) = \frac{j\omega(N-1)!}{(\alpha+j(\omega-\omega_0))^N}.$$
(3)

In the time domain,

$$\psi^{(1)}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left\{ t^{N-1} e^{\beta t} u(t) \right\}$$

= $\left((N-1) t^{N-2} + \beta t^{N-1} \right) e^{\beta t} u(t),$ (4)

where
$$\beta = -\alpha + j\omega_0$$
.

¹¹Venkitaraman et al., Signal Processing. 2014.

	Proposed Method		Conclusions
	000000000		

Figure 3: Gammatone wavelet $\psi^{(1)}(t)$ for $g_q(t) = t^4 e^{-54\pi t + j20\pi t} u(t)$

			Proposed Method			Conclusions
000 000 000 000 000 000 000 000 000 00	00	000	000000000	0	00	000

A family of Gammatone wavelets can be obtained by differentiating the Gammatone to produce wavelets up to a certain order:

$$\psi^{(n)}(t) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} (t^{N-1} e^{\beta t} u(t)).$$
(5)

Introduction Li		Proposed Method			Conclusions
00 0	00	000000000	0	00	000

• The continuous wavelet transform (CWT) of f(t) is defined as

$$W_f(a,b) = \langle f, \psi_{a,b} \rangle = \int_{-\infty}^{+\infty} f(t) \psi_{a,b}^*(t) \,\mathrm{d}t, \tag{6}$$

where $\psi_{a,b}^*(t)$ is the complex conjugate of $\psi_{a,b}(t)$ and $\langle \cdot, \cdot \rangle$ denotes the inner product in $L^2(\mathbb{R})$.

► In practice, we use the discrete-time approximation

$$W_f[a,n] = \sum_m f[m] \frac{1}{\sqrt{a}} \psi\left(\frac{m-n}{a}\right), \tag{7}$$

where f[m] denotes the speech signal, $\psi[n]$ denotes the real part of the Gammatone mother wavelet, $a \in \mathbb{R}^+$ and $n \in \mathbb{Z}$.

	Proposed Method		Conclusions 000

Figure 4: CWT analysis using wavelets $\psi^{(1)}(t)$ and $\psi^{(2)}(t)$.

	Proposed Method 000000●0000		Conclusions

Figure 5: Block diagram of the proposed method.

► The output of the first layer is

$$x_{\mathsf{HR}}[a,n] = \begin{cases} W_f[a,n], & \text{if } W_f[a,n] \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$
(8)

	Proposed Method 00000000000		Conclusions

Figure 6: Block diagram of the proposed method.

► The low-pass filtered signal in each channel is given by

$$x_{\text{LP}}[a, n] = x_{\text{HR}}[a, n] * h_{\text{LP}}[n],$$
 (9)

where $h_{\text{LP}}[n]$ is a Gaussian lowpass filter with $\sigma = a$.

	Proposed Method 00000000●00		Conclusions

Figure 7: Block diagram of the proposed method.

► The max-pool operation along time is represented as follows:

$$\hat{x}[a,n] = \begin{cases} x_{\text{LP}}[a,n=l_k], & \text{if } l_k = \arg\max_{n \in \mathbf{I}_k} \sum_{n \in \mathbf{I}_k} n], \\ 0, & \text{if } n \in \mathbf{I}_k \setminus l_k, \end{cases}$$
(10)

where $I_k = \{n : (k-1)M \le n \le kM\}$ *M* is the width of the window is fixed to the average pitch period of 20 ms.

	Proposed Method 00000000000		Conclusions

Figure 8: Block diagram of the proposed method.

► The third layer computes the pitch-specific feature waveform :

$$\tilde{x}[n] = \sum_{a} \hat{x}[a, n].$$
(11)

	Proposed Method 000000000●		Conclusions
_			

Figure 9: Layer-wise outputs of SN-GWFB for a given speech signal.

Introduction 00	Literature 000	Proposed Method	Experimental Validation	Results 00	Conclusions
Experimenta	al Validation	ı			

- We consider the CMU-ARCTIC database¹² for performance evaluation on clean and telephonic channel speech
- ▶ We consider three databases, viz., BDL, JMK, and SLT.
- Each corpus has 1132 speech recordings spoken by a single speaker and recorded at 32 kHz sampling rate.
- ► We considered 50 utterances from each corpus for the analysis.
- Corresponding telephonic quality speech is simulated by designing the bandpass filter with passband edge at 300 Hz and 3400 Hz and stopband edges at 20 Hz and 4000 Hz, repectively.

¹²Kominek and Black, 5th ISCA Speech Synthesis Workshop, 2004.

Introduction 00	Literature 000	Proposed Method	E×perimental Validation 0	Results ●0	Conclusions
Results					

Table 1: Performance Comparison.

			CI	ean sp	eech			Telephor	ne chan	nel spo	eech
Speaker	Technique	ID	MISS	FAR	SD	Accuracy	ID	MISS	FAR	SD	Accuracy
(Epochs)		%	%	%	ms	within	%	%	%	ms	within
						0.25 ms					0.25 ms
	ZFF	98.08	0.03	1.89	0.30	71.75	86.51	0.01	13.48	0.29	77.44
BDL	SEDREAMS	97.85	1.10	1.05	0.30	84.42	98.21	0.23	1.56	0.38	69.63
(10856)	SZCR	98.74	0.10	1.16	0.35	83.17	97.20	0.22	2.58	0.43	84.18
	DPI	95.01	0.20	0.79	0.89	86.26	98.53	0.22	1.25	0.33	85.42
	Proposed	99.71	0.06	0.23	0.41	81.27	99.20	0.33	0.47	0.58	88.88
	ZFF	99.85	0.03	0.12	0.18	87.32	98.77	0.05	1.18	1.43	86.70
SLT	SEDREAMS	99.78	0.07	0.15	0.28	74.03	97.83	0.74	1.43	1.61	55.65
(15099)	SZCR	99.73	0.13	0.14	0.21	87.84	97.12	0.99	1.89	1.91	79.19
	DPI	98.97	0.69	0.34	0.44	89.74	88.24	5.54	6.22	2.36	79.57
	Proposed	99.90	0.01	0.09	0.33	89.98	99.68	0.21	0.11	0.73	89.94
	ZFF	99.36	0.03	0.61	0.69	57.32	97.82	1.92	0.26	0.81	68.70
JMK	SEDREAMS	99.00	0.95	0.05	0.44	81.03	99.28	0.34	0.38	0.49	62.67
(17923)	SZCR	99.29	0.38	0.33	0.95	59.14	99.29	0.38	0.33	0.95	86.50
	DPI	99.45	0.16	0.39	0.44	88.53	98.08	1.26	0.66	1.36	86.57
	Proposed	99.92	0.05	0.03	0.35	89.98	99.78	0.05	0.17	0.51	89.04

	Proposed Method	Results ○●	Conclusions

Results

Figure 10: Distribution of errors in the estimated epochs.

	Proposed Method		Conclusions ●00
Conclusion			

- We proposed a scattering network framework using the Gammatone wavelet for epoch estimation in a speech signal.
- The discrete-time approximation of the continuous wavelet transform was employed in constructing the 91-channel Gammatone filterbank.
- The epoch locations are estimated as the peak of the accumulated local maxima of filterbank channels.
- The proposed method outperforms the state-of-the-art methods in terms of identification accuracy and false alarm rate, for both clean and telephone quality speech.

	Proposed Method 0000000000		Conclusions

Acknowledgement

Funding Agency

 "Development of text-to-speech synthesis systems for Indian languages - Phase II", funded by the Department of Information Technology, Government of India.

					Conclusions
00	000	0000000000	0	00	000

Thank you