Estimating Centrality Blindly from Low-pass Filtered Graph Signals

Yiran He, Hoi-To Wai

Department of Systems Engineering & Engineering Management, CUHK

April 16, 2020 ICASSP 2020
Motivation

Graphs are useful for describing the geometric structures of data from numerous fields, including social, energy, transportation, and neuronal networks.
Motivation

- Importance of nodes in the graph ➞ node centrality
- E.g., social network – most influential individuals, transport network – cities with largest population mobility.

Research Question: *Can we learn node centrality from data?*
Prior works

- **Graph learning:** recover the complete topology
 - *Statistical/physical models* – GMRF [Friedman et al., 2008], dynamical systems / causation [Shen et al., 2017].
 - *Graph signal processing (GSP) models* – smoothness of graph signals [Dong et al., 2016], inference with structural constraints [Egilmez et al., 2017], spectral template [Segarra et al., 2017].
 - and many others...

- **This work:** learning graph features **without the graph**
 - *Community inference* – blind community detection [Wai et al., 2018], Bayesian learning [Hoffmann et al., 2018], recovery from multi-graph [Roddenberry et al., 2020].
 - *Centrality learning* – centrality ranking inference [Roddenberry and Segarra, 2019], and this work.
Contribution

- We show that the folklore heuristic based on PCA works if data is generated from a ‘strong’ low-pass filter.

- For data generated from a ‘weak’ low-pass filter, we propose a boosting method with provably better estimation quality.

- Numerical experiments on synthetic and stocks data.
Graph Model and Centrality Measure

- **Undirected** graph $G = (V, E, A)$ with $V = \{1, \ldots, N\}$, symmetric adjacency matrix $A \in \mathbb{R}^{N \times N}$
- The adjacency matrix admits an eigenvalue decomposition (EVD) as $A = V \Lambda V^T$ s.t. V = orthogonal, Λ = Diag($\lambda_1, \ldots, \lambda_N$).
- Centrality is given by the eigen-centrality

$$ c_{eig} := \text{TopEV}(A) = v_1 $$

Network

Adjacency Matrix
Graph Signal Model

- Observed data y^t is produced by an excitation x^t to be ‘processed’ by a graph filter $H(A)$

$$y^t = H(A)x^t$$
Graph Filter

- The graph filter $\mathcal{H}(A)$ is a matrix polynomial:

 $$\mathcal{H}(A) = \sum_{t=0}^{T-1} h_t A^t$$

- Set $h(\lambda) := \sum_{t=0}^{T-1} h_t \lambda^t$.

- Assume 1-low pass $\mathcal{H}(A)$:

 $$\max_{j=2,\ldots,N} |h(\lambda_j)|/|h(\lambda_1)| =: \eta < 1$$

 - $\eta \ll 1 \implies$ strong low-pass.
 - $\eta \approx 1 \implies$ weak low-pass.

- E.g., diffusion, op. dynamics.

Excitation Signal

- The input x^t is controlled by an external source z^t:

 $$x^t = Bz^t$$

- Assume a sparse influence matrix $B \in \mathbb{R}^{N \times k}$, $(k < N)$.

- E.g., influence from external source z^t are localized to specific nodes on graph.
Blind centrality estimation

- Idea: apply PCA on the covariance of filtered graph signals, use the principal eigenvector as an estimate for c_{eig}

\[Y = [y_1 \ldots y_m] \]

Observation

\[
C_y = \frac{1}{m} \sum_{t=1}^{m} y_t (y_t)^T
\]

Sample Covariance

\[\hat{v}_1 := \text{TopEV}(C_y) \]

Centrality Estimation

Detected K possible central nodes
Blind centrality estimation

\[C_y = \mathcal{H}(A)BB^\top (\mathcal{H}(A))^\top = V^TBB^\top V \begin{bmatrix} h(\lambda_1) \\ \vdots \\ h(\lambda_N) \end{bmatrix} V^T \]

(for ‘strong’ low pass filter) \(\approx \text{const} \cdot v_1v_1^T \)

Lemma

Suppose \(h(\lambda_1) > \max_{j=2,\ldots,n} h(\lambda_j) \). Then it holds that

\[\|c_{eig} - \hat{v}_1\|_2 = O\left(\frac{\max_{j=2,\ldots,n} |h(\lambda_j)|}{|h(\lambda_1)|}\right) = O(\eta) \]

- Centrality estimation may be **inaccurate** for ‘weak’ low pass filter (i.e., \(\eta \approx 1 \)).
Boosted centrality estimation

- A simple modification to *strengthen* the low-pass filter.
- Let $\rho > 0$. Consider

$$\tilde{H}(A) := H(A) - \rho I, \quad \tilde{h}_\rho(\lambda) := h(\lambda) - \rho.$$

- Let $\mu := \frac{\max_{j=2,\ldots,n} |\lambda_j|}{|\lambda_1|}$

- **Observation**: there exists $\rho > 0$ such that

$$\frac{\max_{j=2,\ldots,n} |\tilde{h}_\rho(\lambda_j)|}{|\tilde{h}_\rho(\lambda_1)|} = O\left(\frac{\max_{j=2,\ldots,n} |\lambda_j|}{|\lambda_1|} \frac{\max_{j=2,\ldots,n} |h(\lambda_j)|}{|h(\lambda_1)|}\right) = O(\mu \eta)$$

- $\tilde{H}(A)$ has a **better low-pass condition** than $H(A)$.
Boosted centrality estimation

- Assume the external signals \(Z \in \mathbb{R}^{k\times M} (k < M) \) are known,
 \[
 \mathcal{H}(A)B =: \hat{HB} = YZ^\top(ZZ^\top)^{-1}
 \]

- \(\mathcal{H}(A)B \) admits a low-rank + sparse decomposition as:
 \[
 \mathcal{H}(A)B = \tilde{H}(A)B + \rho B \equiv L + S
 \]

- \(L \) is a low-rank matrix and \(S \) is a sparse matrix.

- To obtain \(L \), we solve the convex problem:
 \[
 \min_{\hat{L}, \hat{S}} \| \hat{HB} - \hat{L} - \hat{S} \|_F^2 + \lambda_L \| \hat{L} \|_* + \lambda_S \| \text{vec}(\hat{S}) \|_1
 \]

 where \(\lambda_L, \lambda_S \) – regularization for low-rankness, sparseness.
The whole process:

Corollary

Let \tilde{v}_1 be the top left singular vector of L. Under the same conditions as the previous Lemma. It holds

$$
||c_{eig} - \tilde{v}_1||_2 = O\left(\frac{\max_{j=2,\ldots,n} |\lambda_j|}{|\lambda_1|} \frac{\max_{j=2,\ldots,n} |h(\lambda_j)|}{|h(\lambda_1)|} \right) = O(\mu \eta)
$$
Numerical Results

- **Graph G:** Core periphery model with connectivity $p = 0.05$
 \[
 \begin{bmatrix}
 1 & 4p \\
 4p & p
 \end{bmatrix}
 \]

- **$N = 100$ nodes (10 core nodes), $M = 10^5$ observations**

- **Graph filter:** $\mathcal{H}(A) = (I - 0.1A)^{-1}$, $\lambda_L = 0.1$, $\lambda_S = 0.2 + \frac{2}{\sqrt{k}}$.

- **Three settings of B for different locations of external sources** (black - central, blue - regular, red - external):

 Setting (a)/(b)/(c), $k = 20$

 Setting (b), $k = 50$
Numerical Results

\[S_{\text{thres}} = 1(\hat{S} \geq 0.1) \odot \hat{S} \]
and replace \(\hat{L} \) with \(\hat{HB} - S_{\text{thres}} \).

Error rate = \(E\left[\frac{1}{10} \left| \{1, \ldots, 10\} \cap \tilde{v}_1 \right| \right] \)

PCA suffers from a higher error rate than the robust methods.

The error rate for the robust methods decreases with \(k \).

Results are consistent with our theoretical analysis.
Real data

- Data: daily return data from S&P100 stocks in May 2018 to Aug 2019, consisting of $n = 99$ stocks and $m = 300$ samples, collected from https://alphavantage.co.
- External source: the latent input z^t on the relevant days estimated from the interest level on Google Trend (https://trends.google.com) on $k = 5$ key words: ‘trade war’, ‘sales tax’, ‘Iran’, ‘oil crisis’ and ‘election’.
- Method: Robust Estimation with Quantization
Real data

- Estimated most influenced stocks:

PCA:
- NVIDIA
- NETFLIX
- Amazon

Robust PCA:
- GE
- ConocoPhillips
- Facebook

[Source: Wikipedia]
Real data

- Estimated most affected areas:

 - **Trade war**
 - Pharmaceutical industry (WBA, PEF, MDT)

 - **Sales tax**
 - Technology (INTC, ORCL, etc.)

 - **Oil crisis**
 - Oil field (e.g., SLB) and technology (e.g., QCOM, WBA)

 - **Election**
 - Technology (e.g., GE, EMR, etc.) and service (e.g., CVS, SBUX, COST) stocks

 - **Iran**
 - Food (KHC), finance (UNH, BLK), technology (LLY, ORCL), energy (EXC) and others (GM, HD).
Summary

- PCA works if the related filter is ‘strong’ low-pass.

- With ‘weak’ low-pass filter, boosting method is applied.

- Numerical experiments on synthetic and stocks data.

Future Question: Can we learn node centrality from data without knowing external sources?
References

Learning laplacian matrix in smooth graph signal representations.

Graph learning from data under laplacian and structural constraints.

Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432–441.

Community detection in networks with unobserved edges.

Exact blind community detection from signals on multiple graphs.

Blind inference of centrality rankings from graph signals.

Network topology inference from spectral templates.
IEEE Transactions on Signal and Information Processing over Networks, 3(3):467–483.

Kernel-based structural equation models for topology identification of directed networks.

Blind community detection from low-rank excitations of a graph filter.