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Abstract
The universal speech attributes to speaker verification is ad-
dressed in this paper. The manner and place of articulation form
the universal attribute unit inventory, and deep neural network
(DNN) is used as acoustic model. Considering the appropri-
ate DNN output nodes, the manner and place of articulation
are combined to generate more universal attribute units, which
serve as DNN output nodes in acoustic modeling. The proposed
attribute based DNN is used to obtain the posterior probabili-
ty of the acoustic features for the total variability space train-
ing and i-vector extracting. Evaluated on the core test from the
2008 NIST speaker verification evaluation (SRE), the proposed
attribute based DNN/i-vector system can achieve a comparable
performance to that of the phoneme based DNN/i-vector sys-
tem. Furthermore, the attribute based DNN/i-vector speaker
verification system has demonstrated a good complementari-
ty with the GMM-UBM/i-vector and phoneme based DNN/i-
vector systems.
Index Terms: Speaker verification, deep neural network, uni-
versal speech attributes

1. Introduction
In recent years, i-vector [1] based speaker verification systems
have become very popular for their state-of-the-art performance
and ability to compensate for the channel variations. The i-
vector algorithm provides a method to map a speech utterance
to a low dimensional vector while retaining the speaker identi-
ty. Within this i-vector space, variability compensation methods
such as linear discriminant analysis (LDA) [2] and within-class
covariance normalization (WCCN) [3] are performed to reduce
the channel variability. Until now, the best performance is ob-
tained by modeling i-vector distributions through a generative
model known as probabilistic linear discriminant analysis (PL-
DA) [4, 5, 6], which is adopted as backend classifier in this
paper.

DNN has clearly shown their superiority over GMM for au-
tomatic speech recognition (ASR) [7, 8]. The methods to com-
bine recent advances in DNN with speaker verification have
attracted researchers’ attention [9, 10, 11, 12, 13]. In [14], a
generalized i-vector framework is proposed, where the decision
tree senones (tied triphone states) of a DNN model in the ASR
system are employed to generate posterior probabilities, rather
than the conventional GMM-UBM. In combination with a PL-
DA backend, the DNN/i-vector framework can significantly im-
prove the speaker verification performance.

The DNN/i-vector framework adopts the classical ASR a-
coustic model (AM) to produce frame alignments, and the AM
is a language dependent model and must be trained using lan-

guage specific data. As we know, there is no direct relation-
ship between the phonetic information of a speaker’s speech
and characteristic of his vocal track. It is more reasonable to
find fundamental units which can be defined universally across
all languages. In this paper, we propose to replace phonetic
information with universal speech attributes for speaker verifi-
cation. There is a growing interest in exploiting the discrimi-
native properties of universal speech attributes in speech pro-
cessing [15, 16, 17]. S. M. Siniscalchi et al. adopted universal
speech attributes on the token based spoken language identifi-
cation (LID); promising results comparable to acoustically rich
phone based LID systems have already been obtained [18]. A
fusion approach is proposed to LID by combining multiple to-
kenizers with phone and speech attributes models to achieve an
additional average relative equal error rate (EER) reduction in
[19], which demonstrates that speech attribute units are comple-
mentary to phone units.

In this work, we aim to use a universal speech attribute
based DNN to guide speaker modeling. The output nodes of the
DNN are tied triple-attributes states. Considering the number of
tied triple-attribute states, a method to combine the manner and
place of articulation has been proposed to generate attributes
units. The attribute based DNN is used to generate the posteri-
or probability of acoustic features in speaker verification. Af-
ter the posterior probability, namely the zeroth-order statistics,
is obtained, the firstorder statistics is computed in the standard
manner. The advantage of using attributes units is that they are
more fundamental than phonemes, and the acoustic model can
be trained using different language corpus. In other words, u-
niversal speech attributes are more related to the pronunciation
habits of a person than the speech content.

The remainder of this paper is organized as follows. In sec-
tion 2, we describe how to obtain universal speech attribute u-
nits in AM modeling. Then, we briefly review the DNN/i-vector
system in section 3. In section 4, results using the attribute
based DNN on the NIST SRE 2008 corpus are presented. Fi-
nally, we conclude our paper in section 5.

2. Universal Speech Attributes
We build a large vocabulary continuous speech recognition
(LVCSR) system using the universal speech attributes, and this
acoustic model is used to obtain frame alignments for speak-
er verification. The difference between the proposed and the
classical LVCSR systems is the replacement of phonemes with
attribute units in the acoustic model. The input acoustic features
and training procedure of the proposed system are identical to
those of the classical phoneme based system.

The set of universal speech attributes is listed in the first
and second rows of Table 1, which consists of the place and



manner of articulation [16]. The numbers of manner and the
place of articulation are 11 and 10, respectively, which are much
fewer than the phoneme set (approximately 40 in English AS-
R) in conventional LVCSR system. In LVCSR acoustic mod-
el training, context-dependent (CD) models are always adopted
to improve the recognition accuracy. Even when the context-
dependent models are used, the number of attribute units is not
sufficient for good recognition performance. It is unwise to sep-
arately use the place and manner of articulation in acoustic mod-
el.

We combine the place and manner of articulation to in-
crease the number of attribute units. Because there is a direct
mapping between the phonemes and attribute units, we can use
phonemes to generate more attribute units. We look up the place
and manner of a phoneme. If they are different from those of
other phonemes, we define a new attribute unit. For example,
the manner and place of phoneme /ah/ are /vowel/ and /mid/, re-
spectively, so we define a new attributes unit /mid vowel/. The
English phoneme set is used in our experiments, and 23 univer-
sal speech attribute units are obtained by combining the place
and manner of articulation. The set of combination attributes
is listed in the third row of Table 1. In addition to the listed
attributes set, the /silence/ token is used to represent the sound-
less segments, the /stop/ token denotes pauses between speech,
and the /garbage/ token represents /garbage/, /noise/, /breath/,
/cough/, /laugh/, /lip smack/, /sigh/ and /sneeze/.

Table 1: Universal Speech Attributes list in terms of the manner
and place of the articulation

Manner affricate, fricative, nasal, vowel,
voice-stop, unvoiced-stop, glide,

liquid, diphthong, sibilant
place alveolar, alveo-palatal, dental, glottal,

high, bilabial, labio-dental, low, mid,
palatal, velar

Place manner mid vowel, alveo-palatal affricate,
alveolar voice-stop, low diphthong,

palatal glide, mid diphthong,
velar unvoiced-stop, high vowel,

velar voice-stop, alveo-palatal sibilant,
low vowel, alveolar unvoiced-stop,

dental fricative, labio-dental fricative,
alveolar sibilant, high diphthong,
bilabial voice-stop, bilabial glide,

alveolar liquid, alveolar nasal,
bilabial nasal, bilabial nasal,

velar nasal, bilabial unvoiced-stop,
glottal fricative

All of aforementioned attribute units are used in the fol-
lowing acoustic modeling exactly as phonemes are used in the
state-of-the-art ASR systems. Furthermore, content dependent
modeling is adopted to improve performance. As we lack lin-
guistic knowledge for attribute units, we can’t design a suitable
question set for state tying. In this work, we generate ques-
tion set using the approach described in [20]. It is a cluster-
ing technique based on likelihood maximization criteria, where
the first and second half states of context independent models
are used to generate right-context and left-context questions. In
the clustering procedure, groups of attribute units are recursive-
ly clustered until only two maximally separated clusters, and
the procedure is repeatedly performed on each of these clusters

with subsequent exhaustive partitioning. The procedure stops
when the number of attribute units in both maximally separated
clusters is less than or equal to 2. All maximally separated clus-
ters, which are pairwise generated in the clustering procedure,
are parts of final question set. The detailed description can be
referred in [20].

The training procedure of attribute units based acoustic
model is identical to that of the conventional phoneme based
systems, and we use DNN model to generate the posterior prob-
ability of feature vectors, which will be used in the following
total variability modeling.

3. The DNN/i-vector Framework
In the i-vector model [1], we assume that the following distri-
bution generates the t-th speech frame x(i)

t from the i-th speech
sample:

x
(i)
t ∼

∑
k

γ
(i)
kt N(µk + Tkω

(i),Σk) (1)

where the Tk matrices describe a low-rank subspace (called to-
tal variability subspace), by which Gaussian means are adapted
to a particular speech segment; ω(i) is a segment-specific stan-
dard normal-distributed latent vector; µk and Σk are the mean
and covariance of the k-th component of the UBM, respective-
ly. In the training procedure, Tk matrices can be estimated us-
ing zeroth- and first-order Baum-Welch statistics of the training
corpus.

In the GMM-UBM/i-vector framework, each utterance is
represented by its zeroth- and first-order Baum-Welch statistics
extracted with the UBM. In paper [14], Y. Lei et al. made an
important modification to estimate the statistics. They adopted
an ASR DNN model to generate the zeroth-order statistics of
feature vector ot. In this paper, we use a similar DNN/i-vector
framework with [14]. The only difference is our replacement
of the phoneme based DNN with the proposed attribute based
DNN. The flowchart of attribute based DNN/i-vector system is
shown in Fig. 1. In the DNN/ i-vector framework, the UBM can
be trained in a supervised fashion. The means and covariance
of this UBM are:
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The attribute based DNN is used to compute the posteriors
p(k|x(i)

t ) for each frame. This new supervised UBM can re-
place the traditional unsupervised UBM to obtain the required
statistics for the i-vector computation. After the new supervised
UBM is obtained, we can obtain the required posteriors for the
i-vector computation. Given a speech segment i, the following
sufficient statistics can be computed using the DNN posterior
probabilities,

N
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γ
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F
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t
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where Nk and Fk represent the zeroth- and first-order statistic-
s, respectively. These sufficient statistics are used to train the
subspace Tk and extract the i-vector ω(i).

Figure 1: The flow diagram of attribute based DNN/i-vector
framework

4. Experiments
4.1. ASR results

To obtain a fair comparison between the attribute based DNN
and the conventional phoneme based DNN systems, both
HMM-GMM and HMM-DNN models are trained using ap-
proximately 300 hours of clean English telephone speech from
Switchboard data sets. Almost 4000 tied tri-attribute states
are obtained using decision trees as described in [20]. Stan-
dard HMM-GMM systems are used to generate the initial states
alignments to train these two DNNs. Except for the output lay-
er, these two DNNs have identical architectures. The inputs
of DNNs are 429-dimensional features, corresponding to 39-
dimensional perceptual linear predictive (PLP) features within
a context window of 11 (5+1+5) frames. There are 6 hidden
layers with 2048 hidden units in each layer. The output lay-
er of phoneme based DNN has 3990 units, whereas that of the
attribute based DNN has 3988 units. To make the character-
istics conform to a Gaussian distribution, the features are pre-
processed with mean and variance normalization (MVN). The
cross entropy criterion is used to train the DNN model.

Because the DNNs are only used in posteriors extracting,
we do not need to compare the ASR word accuracy. A frame
classification experiment is conducted on the Hub5e00 corpus.
The frame accuracy of these two DNNs is listed in Table 2.

Table 2: Frame accuracy on Hub5e00

Acoustic model Accuracy (%)
Phoneme based DNN 45.17
Attribute based DNN 43.80

Table 2 shows that the frame accuracy is not very high for
both the phoneme and attribute based DNNs. The phoneme
based DNN outperforms the attribute based DNN by 1.37%,
and this performance gap is not notably obvious for the speaker
verification.

4.2. Speaker verification results on NIST 2008

The experiments are carried out under the common conditions
6, 7 and 8 of the NIST 2008 SRE database. The training and test
conditions of these three common conditions are as followed:

• C6: All trials involving only telephone speech in training
and test.

• C7: All trials involving only English language telephone
speech in training and test.

• C8: All trials involving only English language telephone
speech spoken by a native U.S. English speaker in train-
ing and test.

The 39-dimensional PLP features are used in the experi-
ments. Each speech signal is parameterized by the 13th order
PLPs and their first and second derivatives. Further process-
ing including relative spectral (RASTA) filtering, voice activity
detector (VAD), cepstral mean subtraction (CMS) and gaussian-
ization are applied to all PLPs.

Three i-vector systems, including the GMM-UBM/i-vector,
the phoneme based DNN/i-vector and the proposed attribute
based DNN/i-vector systems, are compared in this paper. Be-
cause these three systems include similar procedure in train-
ing procedure, the same file lists from previous SRE databas-
es are selected as training set. NIST SRE 2004, 2005, 2006
and switchboard corpora are used to train the UBMs. For
the baseline GMM-UBM/i-vector system, Gender-dependent
UBMs with 1024 components are trained using the expectation
maximization (EM) algorithm. For the DNN based systems,
supervised UBMs are trained through the aforementioned DNN
posteriors. Each DNN output node is modeled by a single Gaus-
sian. All Gaussian components are merged into a UBM model
for the following i-vector model training.

After the UBM model is obtained, the conventional total
variability matrix training and i-vector extraction procedures are
performed. The total variability matrix with rank 400 is trained
using the NIST SRE databases before 2008. After extracting the
i-vector, further processing including LDA, WCCN, whitening
and length normalization algorithms are applied to improve the
performance. PLDA algorithm is used as backend classifier,
where the sizes of speaker and channel matrices are 150 and 10,
respectively.

The EER and minimal detection cost function (DCF) are
used to evaluate the performance of the systems. The perfor-
mances of different systems (Sys1 to Sys3) are listed in Table 3.
For comparison, the phoneme and attribute based DNN models
are both trained on English telephone speech from Switchboard
data sets. From Table 3, the traditional GMM-UBM/i-vector
system (Sys1) achieves the best performance in multilingual
condition (i.e., C6), whereas the supervised methods (sys2 and
sys3) outperform Sys1 in language matched conditions (i.e., C7
and C8). A reasonable explanation is that the DNNs can provide
more accurate posteriors than the unsupervised GMM-UBM in
language matched conditions. Furthermore, the attribute based
DNN/i-vector achieves comparable performance to that of the
phoneme based DNN/i-vector. There is a slight performance
gap because of the relatively rough modeling unit of the at-
tribute based DNN.

As an important merit, the universal speech attributes can
get rid of the restrictions on the language, and the attribute based
DNN can be trained on multilingual corpus to improve the per-
formance. In this section, 140-hour Mandarin telephone speech
files are added to the original 300-hour Switchboard training
corpus to train the universal speech attributes recognizer. We
map Mandarin phoneme to universal speech attributes as we
has done for English. After this procedure, we use aforemen-
tioned data-driven method to generate decision trees, and 3993
tied tri-attribute states are obtained. Except for the output lay-
ers, the identical architectures as Sys3 are adopted to train the



Table 3: Experimental results in NIST SRE (EER% / minDCF08*1000)

System description Training speech female male
C6 C7 C8 C6 C7 C8

Sys1: GMM-UBM/i-vector – 5.68/28.9 2.54/12.8 2.91/13.3 3.73/20.5 1.65/9.04 1.09/5.47
Sys2: Phoneme based DNN English 6.13/31.6 1.82/9.56 1.93/9.51 4.79/21.1 1.44/8.22 0.64/3.82
Sys3: Attribute based DNN English 6.79/34.2 1.93/11.1 2.16/10.9 5.12/22.6 2.03/7.47 0.64/4.26
Sys4: Attribute based DNN English + Mandarin 6.38/33.7 1.91/10.6 1.93/11.0 5.11/21.2 1.55/8.10 0.87/3.61

Fusion: sys1+sys2 – 5.28/27.7 1.78/10.0 2.12/10.2 3.84/18.4 1.55/7.63 0.83/3.72
Fusion: sys2+sys3 – 6.10/31.5 1.72/9.69 1.81/9.87 4.76/21.1 1.82/7.67 0.52/3.82
Fusion: sys2+sys4 – 6.05/32.1 1.78/9.49 1.88/9.23 4.59/20.7 1.50/7.12 0.79/3.60
Fusion: sys1+sys3 – 5.51/29.0 1.85/10.8 1.89/11.0 3.86/19.0 1.78/7.86 0.85/4.48
Fusion: sys1+sys4 – 5.34/28.7 1.81/10.5 1.90/10.7 3.76/18.8 1.55/7.42 0.88/3.94

Fusion:sys1+sys2+sys3 – 5.16/27.9 1.71/9.02 1.82/9.11 3.50/19.1 1.35/7.64 0.57/3.49
Fusion:sys1+sys2+sys4 – 5.21/27.5 1.73/9.21 1.79/9.17 3.50/18.5 1.32/7.26 0.57/2.85

attribute based DNN, and this system is denoted as Sys4. Com-
pared with the second row of Table 2, the frame accuracy of this
DNN is reduced to 42.97%. A reasonable explanation is that the
characteristic of the additional Mandarin corpus does not match
that of the Switchboard corpus.

After training the attribute based DNN using English and
Mandarin corpus, the posteriors are generated, and speaker ver-
ification experiments are performed. The performance of Sys4
is listed in Table 3. Compared with Sys3, Sys4 can achieve
recognition improvement in most conditions. Thus, the addition
of Mandarin training data brings a more robust DNN model,
which generates more accurate posteriors than Sys3. In partic-
ular, for C6 condition, Sys4 is consistently improved compared
to Sys3 on both male and female parts. Because C6 condition is
a multilingual speaker verification task, the DNN that is trained
with multilingual corpus has stronger classification ability than
the DNN trained with a single language corpus.

4.3. Score fusion

The score fusion of different systems is a challenging issue in
speaker verification field. Because all these four systems can
achieve similar recognition performance, a notably simple score
fusion method is adopted in this paper. The scores of different
systems are fused with equal weights. The fusion results are
shown in the last seven rows of Table 3. The fusion of differ-
ent systems do not always provide improved performance over
the single best system, but it can perform better than the single
system in most common conditions. Specifically, the attribute
based DNN/i-vector speaker verification system have demon-
strated a good complementarity with the GMM-UBM/i-vector
and phoneme based DNN/i-vector systems on both male and
female parts.

5. Conclusion
One limitation of the phoneme based DNN/i-vector framework
is the lack of universal acoustic characterization. This paper
presents a novel speaker verification system, where universal
speech attributes are used to define a new attribute based DNN
that generates frame alignments. This system opens new poten-
tials to use universal acoustic characterization for speaker veri-
fication and train the DNN model with multilingual corpus. The
attribute based DNN/i-vector system achieves comparable per-
formance with the phoneme based DNN/i-vector system. Fur-
thermore, the performance of the attribute based DNN/i-vector

system can be considerably improved when it is trained with
English and Mandarin corpora. Finally, the fusion of the at-
tribute based DNN/i-vector system and other conventional sys-
tems can obtain an obvious improvement. The results indi-
cate that the attribute based DNN/i-vector system and phoneme
based DNN/i-vector system are essentially complementary to
each other.

We design the attribute units using the phoneme mapping
in section 2, and this method has direct connection with the En-
glish phoneme set. In our following study, we will continue
to design a more robust set of attribute units using data-driven
methods.
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