Fitness Heart Rate Measurement using Face Videos

Qíang Zhu*, Chau-Waí Wong*, Chang-Hong Fu⁺, Mín Wu*

* University of Maryland, College Park, USA

+ Nanjing University of Science and Technology, Nanjing, China

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

Introduction

- Heart rate monitoring
 - Contact-based: chest belt, wrist band, ECG
 - Contact-free monitoring using video

 \sim Common in fitness exercise & care for special-needs

- Most works focused on rest/still case
- Addressing Challenges under significant subject motion:
 - 1. Reduce face registration error caused by fitness motion
 - 2. Separate heart beat micro signal from dominated motion modulated components
 - 3. Eliminate possible environmental illumination variation on face

<u>Example Video</u>

HR reference is from chest belt (gold standard for HR monitoring during fitness)

Face Registration (Single Ref.)

Single Reference Solution:

only use one reference frame to register entire video.

ROI (Cheek Region) Selection

- Step 1: facial landmark localization
- Step 2: ROI central point
- Step 3: ROI defined by 20 landmarks (10 on each side) and central point

example of ROI selection on right cheek region

Face Color Signals

- Calculate face color signal by spatial averaging over Regions Of Interest (ROI)
- Obtain a linear combination of three color channels

Improved Segment-based Solution

• Potentially significant occlusion due to long duration

• Improved Segment-based Solution

- Motivation: Bi-directional motion analysis used in advanced video coding technique
- Motion compensation performs twice on overlapped frame w.r.t. two adjacent reference frames

Segment Discontinuity

• Segment Discontinuity Problem:

Overlapped frame contributes different intensities as they correspond to same frame but with different reference.

<u>Detrending</u>

- Slowly varying illumination trend is problematic
- Estimable with two assumptions:
 - Assumption of Small Difference:

 L_2 distance between face color signal x_{raw} and trend x_{trend} of length *L* is small.

- Smoothness Assumption:

the accumulated convexity of the trend is small -----ensure smoothness of estimated trend signal.

 $\widehat{\boldsymbol{x}}_{trend} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \underbrace{||\boldsymbol{x}_{raw} - \boldsymbol{x}||^2}_{\mathcal{A} \text{ ssumption of Small Difference}} = Assumption of Small Difference} \underbrace{D_2 \in \mathbb{R}^{L \times L} : 2^{nd} \text{ order difference matrix}}_{Smoothness Assumption}$

$$\Rightarrow \quad \widehat{\boldsymbol{x}}_{trend} = (I + \lambda D_2^T D_2)^{-1} \boldsymbol{x}_{raw}$$

Motion Frequency Notching

• Dominant frequency is notched s.t. the residue signal can have SNR improved w.r.t. heart rate to be estimated

Robust Frequency Estimation

- First find the strap in spectrogram which corresponds to heart rate frequency component
- The heart rate is estimated by weighted averaging within the frequency range specified by the strap

Flow Chart of Proposed Method

Experiment Setting

Experiment setting	Details
Camera	IPhone6s rear camera
Video Length	≈3 mins
Frame Rate	30Hz
Lighting Condition	Well litOver-the-top florescent lightsDiffused Daylight
Ref. HR measurement	Polar H7 chest belt (gold standard in athletic and fitness training)

Bluetooth

System Performance

	Module combination	RMSE in <mark>bpm</mark> (std)	M _{eRate} (std)
no op	tracker+JBSS (no opt)	7.6 (5.7)	3.60% (2.87%)
JBSS	tracker+fixed (no opt)	5.6 (3.4)	2.61% (1.45%)
fixed	tracker+op+JBSS	1.3 (0.7)	0.65% (0.30%)
op -	tracker+op+fixed (proposed)	1.1 (0.6)	0.58% (0.33%)

Module Name:

- tracker: face tracker and face clipping
- op: optical flow based motion compensation
- JBSS: Joint Blind Source Separation by optimized color combination
- fixed: Source Separation by fixed weight color combination

<u>Summary</u>

- Our proposed system can give accurate and robust heart rate estimation from videos with large subject motion
- Face registration error is minimized by performing optical flow based motion compensation
- Micro signal containing heart rate is well separated from dominant large motion components by color combination and frequency notching procedure
- Illumination variation is eliminated by temporal detrending operation

