Jointly Tracking and Separating Speech Sources Using Multiple Features and the Generalized Labeled Multi-Bernoulli Framework

SHOUFENG (FRANK) LIN

PHD CANDIDATE AND SENIOR ENGINEER

Motivations and Challenges

- The "cocktail party" problem
 - Concurrent speakers (how many)
 - Moving speakers (where)
 - Speech extraction (what is said)
 - Speaker identity (who said what)
 - Interference (what not)
 - Association over time (which to which)
 - etc.

Proposed Method

Multi-feature extraction

- Speaker localization (concurrent, moving speakers)
- Speech separation (multiple speakers)
- Speaker identification (pitch estimation)

Joint online tracking

- Bayes RFS multi-object tracking for multi-speaker and multi-feature
- etc.

Multi-feature Extraction

Speaker localization

- Subspace methods (MUSIC, ESPRIT, etc.)
- Steered-response beamformers
- TDOA based techniques
 - MCC-PHAT

$$\xi^{\mathrm{mcc-phat}}(k,\varsigma) \triangleq \prod_{(i,j)\in P} \xi_{ij}^{\mathrm{gcc-phat}}(k,\tau_{ij}(\varsigma)),$$

where

$$\xi_{ij}^{\text{gcc-phat}}(k,\tau_{ij}(\varsigma)) = \int_{-\infty}^{+\infty} \Xi_{ij}^{\text{gcc-phat}}(k,f) \cdot e^{i2\pi f \tau_{ij}(\varsigma)} df,$$

and

$$\Xi_{ij}^{\text{gcc-phat}}(k,f) = \frac{X_i(k,f) \cdot X_j^{\star}(k,f)}{|X_i(k,f) \cdot X_j^{\star}(k,f)|}.$$

Multi-feature Extraction

6

Speech Separation

- BSS, TFM, etc.
- Wideband Beamformer (WLS, filter-and-sum)

$$\hat{s}_{k,i}(n) = \mathbf{w}_{k,i}^T \mathbf{x}(n),$$

where $[\cdot]^T$ is the matrix transpose, and

$$\mathbf{x}(n) = \left[\mathbf{x}_0(n), \dots, \mathbf{x}_{j_t}(n), \dots, \mathbf{x}_{J_t-1}(n)\right]^T, \ j_t \in [0, J_t-1]$$
$$\mathbf{x}_{j_t}(n) = \left[x_1(n+j_t), \dots, x_j(n+j_t), \dots, x_M(n+j_t)\right].$$

Multi-feature Extraction

Speaker Identification

- GMM, NN, etc.
- Pitch
 - + PEFAC, SHRP, YIN, RAPT, etc.
 - Example (SNR=25dB, babble noise)

Multi-Feature GLMB

Background

- Random Finite Set (RFS)
- Bayes rule, Chapman-Kolmogorov equation
- Conjugate prior
- GLMB
- Hypothesis and Probability density
- Distinct label indicator
- Label set, association map
- Projection function

$$\pi(\mathbf{X}) = \Delta(\mathbf{X}) \sum_{(I,\xi)\in\mathcal{F}(\mathbb{L})\times\Xi} \omega^{(I,\xi)} \delta_I(\mathcal{L}(\mathbf{X})) \left[p^{(\xi)} \right]^{\mathbf{X}}$$

 $\pi(X|Y) = \frac{g(Y|X)\pi(X)}{\int g(Y|X)\pi(X)\delta X}$

where

$$\int f(X)\delta X = \sum_{i=0}^{\infty} \frac{1}{i!} \int_{\mathbb{X}^i} f(\{x_1, ..., x_i\}) d(x_1, \cdots, x_i)$$

$$\pi_+(X_+) = \int f(X_+|X)\pi(X)\delta X$$

Multi-object Multi-feature likelihood function

 $g(z_{\theta(\ell)}|\mathbf{x},\ell) \triangleq g(\hat{\varsigma}_{\theta(\ell)}|\zeta,\ell) \cdot g(\hat{F}_{0\theta(\ell)}|F_0,\ell)$

Test Scenario

11

• Set-up

- UCA with 8 microphones, diameter 0.1m
- 3 speakers (static and moving)

• Metrics: OSPA, PEASS

Test Scenario

• Test results - OSPA for DOAs

Test Scenario

• Test results - PEASS for speech signals

Method	Speaker	OPS	TPS	IPS	APS
Proposed	1	48.75	57.03	71.19	49.11
	2	32.69	29.35	72.06	35.61
	3	36.02	35.73	65.65	37.71
UCBSS	< 1, 2 >	18.66	45.84	43.21	24.33
	3	25.00	6.10	83.97	3.50
DUET	<1,2>	18.73	38.82	16.38	50.43
	3	24.97	51.16	32.40	44.32

Future Works

16

Reverberation and noise

Robust feature extraction methods

- E.g. pitch, location, sound extraction
- Other tracking techniques
 - E.g. track-before-detect, compare MHT, JPDA, etc.

Acknowledgement

- Australian Postgraduate Award
- Australian Government Research Training Program Scholarship
- Supervisions at Curtin University

About the Author

18

- PhD Candidate (final year)
- Senior Engineer (industrial experience)
 - Lead Electrical Engineer with General Electric
 - Staff Analog Engineer with National Instruments
 - RF Engineer with Huawei Technologies
 - etc.
- https://www.linkedin.com/in/franklins/
- <u>ee.linsf@gmail.com</u>

Thanks! Questions and Answers

- Thanks to the reviewers' helpful comments.
- Thank you all for attending.
- What's the main idea of this work?
 - Using the multi-feature GLMB framework, to jointly separate and track multiple features of speakers.
- Is the localization (MCC-PHAT) reverberation robust?
 - The short answer is yes.
- Other questions?