A Performance Analysis on the Optimal Number of Measurements for Coded Compressive Imaging

Oğuzhan Fatih Kar, Alper Güngör, Serhat İlbey, Can Barış Top, H. Emre Güven

ASELSAN Research Center
Ankara, Turkey
Motivation

• Practical coded compressive imaging settings
 – Focal Plane Array (FPA) imaging
 • Gathers noisy undersampled measurements of spatially modulated light intensity from a scene
 • Spatial modulation can be performed at sub-pixel level using a DMD
 • Reconstruction using sparse recovery algorithm
 – Magnetic Particle Imaging (MPI)
 • Allows fast imaging of magnetic nanoparticle (MNP) samples in a FOV
 • System matrix (SM) calibration is done using coded scenes with MNP samples at multiple positions
 • SM reconstruction using compressive sensing

• Investigation of the trade-off between input pSNR, number of measurements, and image quality
Previous Work

- Practical signal transmission in radar/sonar with a fixed power budget (Yang et al., 2017)
 - Measurement matrix with Gaussian iid entries
 - Gaussian, Bernoulli-Gaussian, and least favourite distributions for signal models
 - Sparsity level should be known
 - Based on state evolution technique proposed for approximate message passing algorithm
Assumptions

• FPA Imaging
 – Constant integration time for measurements
 • Per-frame integration time is divided among different spatial modulations
 • k different modulations -> Input SNR scales by $1/k$
 – Signal energy per pixel increases with pixel size
• MPI
 – Signal energy decays linearly with number of coded scenes
Real Domain : FPA Imaging

- k different DMD encodings
- $x \in \mathbb{R}^N$, $y \in \mathbb{R}^{nk}$ (FPA with n pixels) ($N > n$)
- Super-resolution factor $d = \frac{N}{n}$ & Compression ratio $m = \frac{k}{d}$
- Forward model: $y = \tau Ax + n$ where $n \in \mathbb{R}^{nk}$ is AWGN and $A = D\Lambda$
- $\tau = \frac{d}{k}$ reflects the effects of increased pixel size and decreased integration time per DMD mask, given constant noise level
\[y = \tau A x + n \]

\[
\min_x \alpha_1 \|Fx\|_1 + \alpha_2 TV(x) \quad \text{subject to} \quad \left\|Ax - \frac{y}{\tau}\right\|_2 \leq \frac{\epsilon}{\tau}, x[i] \geq 0 \ \forall i
\]

- \(F \): Sparsifying transform such as the Fourier
- \(TV(.\)\) : Total variation operator
- \(\epsilon \): Bound on the noise
- Weighted sum is due to superior performance
- ADMM based reconstruction algorithm (Kar et al., 2018)
Complex Domain: Magnetic Particle Imaging
System Calibration

\[y = Xp + n \]

- \(y \in \mathbb{C}^M \): measurements, \(p \in \mathbb{R}^N \): Calibration Scene
- \(X \in \mathbb{C}^{M \times N} \): System matrix (SM), \(n \in \mathbb{C}^N \): Complex AWGN

- Taking multiple measurements using different \(p \), a single row of \(X \), i.e. \(x^{(i)} \):
 \[y^{(i)} = P^T x^{(i)} + n \]
 - \(P \): Binary coding scene, \(y^{(i)} \): \(i \)-th row of SM sensed with \(P \)
Magnetic Particle Imaging – Reconstruction

\[y^{(i)} = P^T x^{(i)} + n \]

\[\min_x \|Dx^{(i)}\|_1 \quad \text{subject to} \quad \|P^T x^{(i)} - y^{(i)}\|_2 \leq \varepsilon_i \]

- \(D \): Sparsifying transform such as the DCT
- Entries of \(P \) are drawn from a symmetric Bernoulli distribution
- ADMM based reconstruction algorithm (Ilbey et al., 2018)
- Can be considered as a special case of the FPA-imaging problem
Compressive Sensing Perspective

• Theorem 1.2 (Candes, 2008)

\[\| \hat{x} - x \|_2 \leq C_0 s^{-0.5} \| x - x_s \|_1 + C_1 \epsilon \]

\[C_0 = 2 \frac{1-(1-\sqrt{2})\delta_{2s}}{1-(1+\sqrt{2})\delta_{2s}} , \quad C_1 = 4 \frac{\sqrt{1+\delta_{2s}}}{1-(1+\sqrt{2})\delta_{2s}} \]

- \(\hat{x} \): Estimate of \(x \)
- \(x_s \): \(s \) — sparse version of \(x \)
- \(\epsilon = m\sigma^2 \): Bound on the noise
- \(\delta_{2s} \): Restricted isometry constant

• Increasing \(m \) increases the second term in (1)
• \(\delta_{2s} \) is monotonically decreasing function of \(m \)
• \(C_0 \) and \(C_1 \) calculations are NP-hard, thus the bound is an NP-hard problem
• There exists an optimal number of measurements for a given problem, but its solution is impractical
ADMM Based Reconstruction

• ADMM
• Problem formulation:

\[
\begin{align*}
\text{minimize} & \quad f_1(x) + f_2(z) \\
\text{subject to} & \quad Gx + Qz - r = 0
\end{align*}
\]

• \(f_1(.)\) and \(f_2(.)\) separable convex functions
• Two small problems instead of one large problem
• Updates \(x\) and \(z\) alternatingly
Solved Problem

\[
\begin{align*}
\min_{x} & \quad \alpha_1 \|Fx\|_1 + \alpha_2 TV(x) \\
\text{subject to} & \quad \|Bx - y\|_2 \leq \epsilon, \ x[i] \geq 0 \ \forall i
\end{align*}
\]

Solved Problem in ADMM Form

\[
\begin{align*}
\min_{x,z} & \quad f_1(x) + f_2(z) \\
\text{subject to} & \quad Gx + Qz - r = 0
\end{align*}
\]

Where

\[
f_1(x) = \mathcal{I}_{(x \geq 0)}(x), \quad f_2(z) = \alpha_1 \|Fz^{(1)}\|_1 + \alpha_2 TV(z^{(2)}) + \mathcal{I}_{(\|Bz^{(3)} - y\|_2 \leq \epsilon)}(z^{(3)})
\]

\[
G = [I \ I \ B]^T, \quad Q = -I, \quad r = 0, \quad z = [z^{(1)} \ z^{(2)} \ z^{(3)}]^T
\]

Efficient solutions of ADMM steps (Kar et al., 2018)
Results: FPA imaging

- Image size: 360×360
- FPA size: 30×30, 60×60, 90×90
 - Super resolution ratios (d): 144, 36, 16 respectively
- Input pSNR levels (for full integration time): $40 \, \text{dB}$, $50 \, \text{dB}$, $60 \, \text{dB}$
- Compression ratios (m): 0.05, 0.10, 0.15, ..., 0.80
- Each experiment is repeated 10 times with different noise & mask realizations
Results: FPA imaging

30 × 30 FPA
Results: FPA imaging

30 × 30 FPA

60 × 60 FPA
Results: FPA imaging

- Reconstruction improves up to some measurement level, and decrease afterwards
- As the noise level decreases, optimal number of measurements favors more measurements
- All three images result in similar performance and optimal number of measurements
- Reconstruction performance decreases with lower FPA resolution
Results : MPI

- Image size : 40×20
- Input pSNR levels : 0 dB, 10 dB,..., 40 dB
- Compression ratios (m) : 0.05, 0.10, 0.15, ..., 0.80
Conclusions & Future Work

• Practical analysis of two coded compressive imaging techniques
 – FPA imaging and MPI
 – Under different noise, super resolution, compression ratio settings

• Optimal number of measurements favor higher number of measurements as the input pSNR increases, and vice versa

• Finding it analytically requires knowledge of sparsity level which is impractical

• Shortcomings
 – Linear scaling in signals
 – Additional non-idealities such as photon noise
THANK YOU

• Contact
 – Oğuzhan Fatih Kar – ofkar@aselsan.com.tr
 – Alper Güngör – alpergungor@aselsan.com.tr
 – Serhat Ilbey – silbey@aselsan.com.tr
 – Dr. Can Barış Top – cbtop@aselsan.com.tr
 – Dr. H. Emre Güven – hegufen@aselsan.com.tr