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Introduction
Hidden Markov models (HMMs) are the dominant approach for text-to-speech synthesis (TTS). However, HMMs are 

limited by several assumptions which do not apply to the properties of speech. In order to improve the quality of the 
synthesized speech many alternative statistical models have been proposed. Among these models, the Switching Linear 
Dynamical Models are particularly useful to represent the succession of homogeneous segments of speech. They are multi-
level hybrid acoustic models where the transition between segments is described by an HMM, whereas the dynamics within 
each segment is described by a Linear Dynamical Model (LDM). When used as generative models, LDMs have low 
computational requirements, low-latency and produce speech of similar quality to HMMs using fewer parameters. 

As in the case of HMMs, the trajectories of speech parameters generated from LDMs are over-smoothed due to statistical 
averaging of multiple trajectories during model training. This causes the degradation of perceptual quality and makes 
synthetic speech sound muffled. Inspired by the improvement in naturalness when the global variance (GV) is compensated 
in HMM-based speech synthesis, this work proposes a speech parameter generation algorithm that considers GV in LDM-
based speech synthesis. 

LDMs

�
𝑥𝑥1~𝑁𝑁(𝑔𝑔1,𝑄𝑄1)
𝑥𝑥𝑡𝑡 = 𝐹𝐹𝑥𝑥𝑡𝑡−1 + 𝑔𝑔 + 𝑤𝑤(𝑥𝑥), 𝑤𝑤(𝑥𝑥) ~𝑁𝑁(0,𝑄𝑄)
𝑦𝑦𝑡𝑡 = 𝐻𝐻𝑥𝑥𝑡𝑡 + 𝜇𝜇 + 𝑤𝑤(𝑦𝑦), 𝑤𝑤(𝑦𝑦)~𝑁𝑁(0,𝑅𝑅)

Generating a Segment of Speech Parameters with an LDM
Given an LDM with parameters 𝜃𝜃, we seek speech parameters �𝑌𝑌 that maximize the likelihood

𝑝𝑝 𝑌𝑌 𝜃𝜃 = �
𝑋𝑋
𝑝𝑝 𝑌𝑌,𝑋𝑋 𝜃𝜃 𝑑𝑑𝑋𝑋

Since 𝑝𝑝 𝑌𝑌,𝑋𝑋 𝜃𝜃 is Gaussian, the maximum of the likelihood is attained when the hidden state and the speech parameters
are equal to their mean values.

�𝑥𝑥1 = 𝑔𝑔1
�𝑥𝑥𝑡𝑡 = 𝐹𝐹 �𝑥𝑥𝑡𝑡−1 + 𝑔𝑔, 𝑡𝑡 = 2, … ,𝑇𝑇
�𝑦𝑦𝑡𝑡 = 𝐻𝐻�𝑥𝑥𝑡𝑡 + 𝜇𝜇, 𝑡𝑡 = 1,2, … ,𝑇𝑇

Generating Speech Parameters of an Utterance with LDMs 
 The front-end module of a TTS system produces linguistic and phonetic transcription of the input text. 
 The linguistic labels are then associated with a sequence of LDM models through a linguistic-to-acoustic mapping. 
 The duration of each segment is determined by an external model.
 A trajectory of speech parameters for an utterance is then produced as the concatenation of the trajectories generated 

from each one of the LDMs in the sequence.

Global Variance Constrained LDM Synthesis
Given the sequence of labels of an utterance 𝑢𝑢, we seek speech parameters �𝑌𝑌 that 
jointly maximize the LDM likelihood and the likelihood of the GV.

𝑝𝑝 𝑌𝑌 Θ𝑢𝑢,𝜃𝜃𝑣𝑣 = �
𝑋𝑋

𝑝𝑝 𝑌𝑌 𝑋𝑋,Θ𝑢𝑢,𝜃𝜃𝑣𝑣 𝑝𝑝 𝑋𝑋 Θ𝑢𝑢 𝑑𝑑𝑋𝑋

where the parameters Θ𝑢𝑢 of the LDMs and the parameters 𝜃𝜃𝑣𝑣 of the GV Gaussian 
distribution are independently trained from the speech corpus.

It is assumed that:

a. the distribution of 𝑋𝑋 is independent of the parameter 𝜃𝜃𝑣𝑣 and 

b. the probability density function 𝑝𝑝 𝑌𝑌 𝑋𝑋,Θ𝑢𝑢,𝜃𝜃𝑣𝑣 is written as a product of 
experts, where 𝑍𝑍 is a normalizing constant and the weight 𝜔𝜔 is equal to 1. 

𝑝𝑝 𝑌𝑌 𝑋𝑋,Θ𝑢𝑢,𝜃𝜃𝑣𝑣 = 1
𝑍𝑍
𝑝𝑝 𝑌𝑌 𝑋𝑋,Θ𝑢𝑢 𝑝𝑝(𝑣𝑣(𝑌𝑌)|𝜃𝜃𝑣𝑣)𝜔𝜔𝑇𝑇𝑢𝑢

To reduce the computational cost, the trajectories of states �𝑋𝑋, are chosen to 
maximize 𝑝𝑝(𝑋𝑋|Θ𝑢𝑢).

Then the following log-scaled likelihood is maximized with respect to 𝑌𝑌

𝐿𝐿 = −
1
2

�
ς∈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢)

�
𝑡𝑡=1

𝑇𝑇ς

𝑦𝑦ς𝑡𝑡 − �𝑦𝑦ς𝑡𝑡
⊤𝑅𝑅𝑞𝑞−1 𝑦𝑦ς𝑡𝑡 − �𝑦𝑦ς𝑡𝑡 −

𝜔𝜔𝑇𝑇𝑢𝑢
2

𝑣𝑣 − 𝜇𝜇𝑣𝑣 ⊤Σ𝑣𝑣−1 𝑣𝑣 − 𝜇𝜇𝑣𝑣

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢) is the sequence of labels of utterance 𝑢𝑢, 𝑇𝑇ς is the duration 
associated to label ς and 𝑇𝑇𝑢𝑢 = ∑ς∈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢)𝑇𝑇ς is the duration of utterance 𝑢𝑢.
Also, 𝑞𝑞 is the index of the LDM model in which label ς is mapped. 𝑅𝑅𝑞𝑞 is the noise 
covariance of LDM model 𝑞𝑞 and �𝑦𝑦ς𝑡𝑡 = 𝐻𝐻𝑞𝑞 �𝑥𝑥ς𝑡𝑡 + 𝜇𝜇𝑞𝑞. The index 𝑡𝑡 of 𝑦𝑦ς𝑡𝑡 refers to the 
position of vector 𝑦𝑦 within the segment ς.

To determine 𝑌𝑌 we iteratively update 𝑌𝑌 with the gradient method

𝑌𝑌 𝑖𝑖+1 𝑡𝑡𝑡 = 𝑌𝑌 𝑖𝑖 𝑡𝑡𝑡 + 𝛼𝛼 𝜕𝜕𝐿𝐿
𝜕𝜕𝑌𝑌

Experiments
 A database containing 4417 sentences (approximately 5 h of speech) of an

American English female speaker was used to verify the effectiveness of the
proposed GV-based speech parameter method.

 Full context labels were created by using a proprietary front-end.
 From the training utterances, 40 mel-cepstral coefficients, 39 phase features, F0

and 20 mel-band-aperiodicity parameters were extracted at every 5 ms [3].
 The LDMs were trained as described in [2].
 In our experiments, GV is applied for mel-cepstral coefficients only, since the

intention is to remove the muffled speech quality.
 A forced A-B test was conducted using 24 test sentences, with durations varying

between 1.3–9.2 s (mean duration 3.7 s).
 Fifty four listeners took part in the test, where 11 of them were speech processing

specialists.
 Each test sentence was synthesized in two versions:

1. LDM synthesis without GV
2. LDM synthesis with GV.

 The speech processing specialists had 100% preference, while
 the non-specialists had 96.12% preference for the utterances produced by the

GV-based speech parameter algorithm.

 From the above figures, it can be noticed that the effect of GV is more prominent
in higher order coefficients and therefore the increase in speech quality comes
mostly from improvements on the generated trajectories for higher order
quefrencies of the generated cepstrum.

Conclusions
 According to subjective preference tests, the proposed algorithm greatly improves

the naturalness of the synthesized speech at an additional computational cost.
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Global Variance
For a given utterance trajectory 𝑌𝑌 = 𝑦𝑦1, … ,𝑦𝑦𝑇𝑇𝑢𝑢

⊤
of 𝑚𝑚 dimensional natural speech parameter vectors, the GV is 

defined on each dimension 𝑘𝑘 ∈ 1, … ,𝑘𝑘, … ,𝑚𝑚 independently as the intra-utterance variance of the k-th trajectory.

𝑣𝑣 = 𝑣𝑣 1 , … , 𝑣𝑣 𝑘𝑘 , … , 𝑣𝑣(𝑚𝑚) ⊤ where  𝑣𝑣 𝑘𝑘 = 1
𝑇𝑇𝑢𝑢
∑𝑡𝑡=1
𝑇𝑇𝑢𝑢 𝑦𝑦𝑡𝑡 𝑘𝑘 − �𝑦𝑦(𝑘𝑘) 2 with  �𝑦𝑦 𝑘𝑘 = 1

𝑇𝑇𝑢𝑢
∑𝑡𝑡=1
𝑇𝑇𝑢𝑢 𝑦𝑦𝑡𝑡(𝑘𝑘)

The distribution of GV is modelled as a single Gaussian distribution 𝑁𝑁(𝑣𝑣; 𝜇𝜇𝑣𝑣, Σ𝑣𝑣), which is estimated from the GV vectors 
of the training sentences. The covariance matrix Σ𝑣𝑣 is diagonal, since the GV of each dimension is calculated independently 
of other dimensions.

Hidden states

Observations

y1 y2 y3 y4 y5 y1 y2 y3 y4 y1 y2 y3 y4 y5 y1 y2 y3

yt-1 yt yt+1

x1 x2 x3 x4 x5 x1 x2 x3 x4 x1 x2 x3 x4 x5 x1 x2 x3

s1 s2 s1 s3

L1 L2 L3 L4

d1 d2 d1 d3

Full context 
labels

Many-to-one   
linguistic-to-acoustic 

mapping

Duration 
model

Observations

LDM 
states

Utterance 2: 𝑣𝑣 3 = 0.225

Utterance 3: 𝑣𝑣 3 = 0.3533

𝜇𝜇𝑣𝑣 3 = 𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚 0.1848, 0.225, 0.3533 = 0.2543

Example

Σ𝑣𝑣 3,3 = 𝑣𝑣𝑙𝑙𝑣𝑣 0.1848, 0.225, 0.3533 = 0.007745

Utterance 1: 𝑣𝑣 3 = 0.1848

Trajectories of the 3rd cepstral coefficient

Trajectories of the 3rd and 35th mel-cepstral coefficients. Blue dot–dot line: original. Red 
continuous thick line: LDM generated. Black dash–dash line: GV applied.
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