Acute Lymphoblastic Leukemia Detection Based on Adaptive Unsharpening and Deep Learning

Angelo Genovese*, Mahdi S. Hosseini†, Vincenzo Piuri*, Konstantinos N. Plataniotis‡, Fabio Scotti*

*Università degli Studi di Milano
Dep. of Computer Science
Milano (MI), Italy

†University of New Brunswick
Dep. of Electrical & Computer Engineering
Fredericton, NB, Canada

‡University of Toronto
Dep. of Electrical & Computer Engineering
Toronto, ON, Canada
Outline

• Introduction
 o Acute Lymphoblastic Leukemia (ALL)
 o Computer Aided Diagnosis (CAD)
 o Deep Learning (DL) for ALL

• Proposed method

• Experimental results
 o Quantitative analysis
 o Qualitative analysis

• Conclusions
Acute Lymphoblastic Leukemia (ALL)

• Disease
 o Affects the blood cells, rapidly spreads
 o Fatal consequences if left untreated

• Diagnosis
 o Experienced pathologist manually inspects white cells in peripheral blood samples identifying the cells with the typical blast morphology
 o **Lymphoblasts**: white cells with an altered morphology
 ➢ Normally present in the bone marrow
 ➢ *An increased number of lymphoblasts in peripheral blood can be associated with ALL*
Computer Aided Diagnosis (CAD)

• Partially automate Lymphoblast detection process
 o Image processing
 o Machine Learning (ML)

• Three main categories
 o Handcrafted feature extraction and shallow ML classifier
 o Handcrafted feature extraction and Deep Learning (DL)
 o Pure DL
Deep Learning (DL) for ALL

• Deep Learning
 o Automatically learns data representations
 o No need for handcrafted feature extraction
 o Higher accuracy

• State of the art of DL for ALL
 o Strive towards higher classification accuracy
 ➢ More efficient learning procedures
 ➢ Original network architectures
 o However, no method deals with ALL data analysis
 ➢ No focus or quality analysis
 ➢ No preprocessing algorithm
Proposed Method (1/2)

• First DL-based method for lymphoblast detection that analyzes ALL data
 o **Focus** quality estimation
 o Adaptive **unsharpening**
 o White blood cell classification using **CNNs**
 ➢ 0: «normal»
 ➢ 1: «lymphoblast»
Proposed Method (2/2)

A) Image registration
B) Focus quality estimation and adaptive image unsharpening
C) Shallow CNNs for tuning of adaptive image unsharpening
D) Final adaptive image unsharpening
E) Deep CNN classification
Image Registration

- Color normalization and grayscale conversion

\[M_{\text{thresh}} = \text{Otsu's binarization} \]

\[M_{\text{fcm}} = \text{Fuzzy C-means clustering} \]
 - Discard largest class (background)

\[M = M_{\text{thresh}} + M_{\text{fcm}} \]
 - Extraction of largest CC

- Active contour refinement

- Ellipse fitting
 - Center of ellipse: \(c_x, c_y \)
 - Axes of ellipse: \(a_{\text{max}}, a_{\text{min}} \)

- Extraction of ROI centered on \(c_x, c_y \), with size \(1.5 \cdot a_{\text{min}} \)
Focus Quality Estimation and Adaptive Image Unsharpening (1/2)

• Estimation of focus quality
 o FQPath method
 ➢ Decomposes the input image using a visual sensitivity-like FIR filter corresponding to the out-of-focus lens
 ➢ Extracts high order statistical moment features to quantize the image sharpness level
 ➢ Vector of focus qualities \(\mathbf{f} = [f_1, f_2, \ldots, f_N] \)

• Estimation of data bias
 o Correlation coefficient between \(\mathbf{f} \) and vector of labels \(\mathbf{l} \):
 \[b = \text{corrcoeff}(\mathbf{f}, \mathbf{l}) \]
 o Significant data bias: \(|b| > 50\% \)

Focus Quality Estimation and Adaptive Image Unsharpening (2/2)

- **Adaptive unsharpening**
 - Improving focus quality for each image until it reaches the threshold $th_{unsharp}$
 - The threshold is uniquely computed for each training subset
 - Determines which focus the images should have
 - **Unsharp masking**
 - Gaussian kernel with standard deviation σ_i
 - σ_i is adaptively estimated for each image to reach the focus quality $th_{unsharp}$
 - $\sigma_i = \arg\min \sigma(f_i - th_{unsharp})$
 - **Threshold is computed to minimize the data bias:**
 - $th_{unsharp} = \arg\min(|b|)$
Shallow CNNs for Tuning of Adaptive Image Unsharpening (1/2)

- Tuning of \(th_{\text{unsharp}} \) using a shallow CNN
 - Train a CNN on the unsharpened samples
 - Varying \(th_{\text{unsharp}} \pm 10\%
 - Considering the value for which the CNN obtains the best classification accuracy
Shallow CNNs for Tuning of Adaptive Image Unsharpening (2/2)

- **Shallow CNN: VAR-PCANet**
 - High-accuracy baseline in several fields
 - 1 layer
 - Filters are computed as eigenvectors of input data
 - Number of filters V adaptively estimated to preserve a percentage th_{var} of variance of input data
 - $V = \arg \min_V \left(\sum_{v=1}^{V} \lambda_v \right) - th_{var}$
 - Feed-forward design
 - Extracts a feature vector
 - Compare samples in the feature space
 - Classification with Nearest Neighbor (1-NN) classifier
 - No training
 - Output only depends on the feature vector
Final Adaptive Image Unsharpening

• Application of tuned threshold $th_{unsharp}$
 - Both training and testing subsets
 - Set of unsharpened images $DB_{unsharp}$
Deep CNN Classification

• Pre-trained CNN
 o Limited number of samples
 o Substitute last layer
 - 1000 classes (ImageNet) → 2 classes (ALL)
 - (0: “normal”; 1: “lymphoblast”)
 o Fine tuning on the ALL database
 - Train on the training subset
 - Inference on the testing subset
Experimental Results

- **Database**
 - ALL-IDB2 dataset
 - 260 images of white cells, each with binary label
 - (0: “normal”; 1: “lymphoblast”)
 - Cropped to show only region around the cell

- **Evaluation procedure**
 - N-fold validation ($N = 2$) repeated 10 times, results averaged
 - Apply the proposed methodology on the training subset
 - Estimate $th_{unsharp}$, perform the final unsharpening, train the Deep CNN on $DB_{unsharp}$
 - Apply Deep CNN to perform the classification on the testing subset of $DB_{unsharp}$

Quantitative Analysis

<table>
<thead>
<tr>
<th>Original</th>
<th>Deep CNN</th>
<th>Accuracy (%) $(Mean_{Std})$</th>
<th>Unsharp</th>
<th>Deep CNN</th>
<th>Accuracy (%) $(Mean_{Std})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AlexNet</td>
<td>93.76$^{2.06}$</td>
<td></td>
<td>AlexNet</td>
<td>95.07$^{1.85}$</td>
</tr>
<tr>
<td></td>
<td>VGG16</td>
<td>95.30$^{2.52}$</td>
<td></td>
<td>VGG16</td>
<td>96.84$^{1.27}$</td>
</tr>
<tr>
<td></td>
<td>VGG19</td>
<td>95.38$^{2.05}$</td>
<td></td>
<td>VGG19</td>
<td>95.53$^{1.57}$</td>
</tr>
<tr>
<td></td>
<td>ResNet18</td>
<td>96.00$^{1.01}$</td>
<td></td>
<td>ResNet18</td>
<td>96.00$^{1.13}$</td>
</tr>
<tr>
<td></td>
<td>ResNet50</td>
<td>96.00$^{1.48}$</td>
<td></td>
<td>ResNet50</td>
<td>96.69$^{1.49}$</td>
</tr>
<tr>
<td></td>
<td>ResNet101</td>
<td>95.53$^{1.97}$</td>
<td></td>
<td>ResNet101</td>
<td>96.00$^{1.87}$</td>
</tr>
<tr>
<td></td>
<td>DenseNet201</td>
<td>96.76$^{1.48}$</td>
<td></td>
<td>DenseNet201</td>
<td>96.69$^{1.14}$</td>
</tr>
</tbody>
</table>
Qualitative Analysis

Images

Original Unsharpened

Grad-CAM

Original Unsharpened
Conclusions

• First ML-based for focus quality estimation, adaptive unsharpening, and classification of ALL blood samples
 o Improve sharpness of images prior to classification
 o Shallow CNN to tune the unsharpening parameters
 o Adaptively reducing bias between quality and label

• Experiments show increase in classification accuracy using state-of-the-art pretrained CNNs

• Future works
 o Databases with more samples
 o Different DL architectures
Thank you for your kind attention!

https://iebil.di.unimi.it/cnnALL/index.htm
https://homes.di.unimi.it/scotti/all/