Problem Formulation

- Sensor network as an undirected graph \(\mathcal{G}(V, E) \) of order \(n \)
 - Stationary sensors located at positions, \(s_i \in \mathbb{R}^2 \)
- Target position \(p(t) \in \mathbb{R}^2 \)
 \(p(t) = v(t) \)
- Measurements are unit vectors \(\varphi_i(t) \)
 \(\varphi_i(t) = \frac{p(t) - s_i}{\|p(t) - s_i\|_2} \)
- Define \(\rho_i(t) = \|p(t) - s_i\|_2 \) and \(\varphi_i(t) = \left[\cos(\theta_i(t)) \sin(\theta_i(t)) \right]^T \)
- \(\rho_i(t)\varphi_i(t) = p(t) - s_i \)

Distributed Algorithm

- In terms of local quantities \(p^*(t) = \left(\frac{1}{n} \sum_{i=1}^{n} h_i(t) h_i^T(t) \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} h_i(t) z_i(t) \right) \)
- Let \(P_i(t) = h_i(t) h_i^T(t) \) and \(q_i(t) = z_i(t) h_i(t) \)
 \(p^*(t) = \left(\frac{1}{n} \sum_{i=1}^{n} P_i(t) \right)^{-1} \frac{1}{n} \sum_{i=1}^{n} q_i(t) \)
- Construct a vector \(\phi_i(t) \in \mathbb{R}^6 \)
 \(\phi_i(t) = \left[\text{vec}(P_i(t)) \mid q_i(t) \right] \)
- Time-varying average
 \(\bar{\phi}(t) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(t) = \frac{1}{n} (1_n \otimes I_6) \phi(t) \)

Dynamic average consensus (DAC)

- DAC algorithm
 \(\bar{w}_i(t) = -\beta \sum_{j=1}^{n} a_{ij} \text{sgn} \{ x_i(t) - x_j(t) \} \)
 \(x_i(t) = u_i(t) + \phi_i(t) \)
 \(w_i(t) \in \mathbb{R}^6 \) is the internal states
 \(x_i(t) \in \mathbb{R}^6 \) is the estimate of \(\phi(t) \)
- In a compact form
 \(\bar{w}(t) = -\beta (B \otimes I_6) \text{sgn} \{ (B^T \otimes I_6) \bar{x}(t) \} \)
 \(\bar{x}(t) = \bar{x}(t) + \phi(t) \)
- Define
 \(w(t) = \text{vec}(P(t)) \)
 \(x(t) = w(t) + (M \otimes I_6) \phi(t) \)

Conclusion

- Distributed algorithm to track maneuvering targets from bearing measurements
- Built on the dynamic average consensus algorithm
- Can be easily extended to discrete-time scenarios
- Future research include extension to noisy scenarios and privacy preserving & event-triggered communication schemes

Numerical Results

- Parameters: \(\gamma = 10^2, \hat{n} = 5 \), and \(\tilde{\lambda}_2 = 0.4 \)