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Introduction

e Develop a technique for developing prognostic image characteristics, termed
radiomics, for non-small cell lung cancer based on a tumour edge region-based
analysis.

e Texture features were extracted from the rind of the tumour in a publicly
available 3D CT data set to predict two-year survival.

e Medical experts have expressed a need for this data to be analysed

o Improve treatment planning and improve overall patient survivability.

e Impact of providing personalised automated radiotherapy treatment.



What is Radiomics?

e Radiomics: is the application of textual image processing and data mining in the field of radiology. This
is a novel approach to improve treatment outcomes, by finding attributes and features in CT imaging

data.
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Why Personalised Radiotherapy?

« Patients vary « Terabytes of cancer * Radiomics is the
significantly, data available to be proposed method
however clinical mined. for solving this
trials can’t match problem.

« Itis proposed that
through data mining
all data better
treatment options
can be applied.

every variation
exactly, hence
treatment plans can
be incorrect.




f University of Sydney Sy s V)
Real-ime imaging and treatment adaptation | - _AI’ =
Rotating couch development NN~ =2

- Liverpool ) ‘ e

Ingham Institute
University of NSW U Queensland
Build research bunkerand MRI-linac : Magnet, gradient coil and RF
Integrated system measurements performance

Dosimetric validation with EPID

Health technology assessment

Translating research into policy /
—

The Australian MRI-linac Program:
Improving cancer treatment
through real-time image guided
adaptive radiotherapy

University of Newcastle
Intrafraction monitoring with EPID Diffusion imaging
Nanoscale contrast agents

— s U Western Sydney ]

'\
=St
Stanford University University of Wollongong
Electron gun/waveguide simulations Detector development "I -
; —— ——— Treatment head/patient transport simulations
7 2 Proton therapy simulations




Key Challenges

z;:aprocessmg the Finding Features Modelling the data

Remove duplicated
data

Normalise data to
ensure it is comparing
like to like

Transform data from
DICOM images to
MATLARB files for
simpler analysis.

Discover Radiomic .
signatures and other
textual features to find
relationship with 2-year
survivability

Use data mining and
image processing
techniques such as
Logistic Regression or
Support Vector
Machines to model
data.



Extracting the
Rind

Region exploration around the
GTV




Deriving the Boundary Masks

To derive the mask, we first define the set of points representing the inside and outside rind, let x € R3
and z € R*define positions vectors in the 3-Dimensional image set frame. Further, let V C R3 be the set of
all points in the gross tumour volume (GTV) as given by the expert or any other segmented region of
interest (ROI) and V c Vis defined as all points on the boundary of this region.

Suppose there is a distance function that can be constructed for each ROI, d(V) : R* = R, which will be
defined by the following

o min |[x — z|, Vz €V, Vx ¢ V
d(X,V)—{ —min|x—z|, Vze V, Vx € V

Now the outer boundary region can be expressed by the set
S, ={x|0<dx,V) <L} (1)

where L is the width of a region that contains all line segments perpendicular to the surface. So is
therefore a region external to the ROI. Conversely, we have

S, ={x| —L<dx,V) <0}, (2)

defining an inner region such that S; C V. Colloquially, we refer to the region, S = {S; US,}, as the rind of a
given ROI, obtained by expanding or contracting the ROI uniformly from the surface by L. 8



Rind Comparison
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Slice 67

Rind analysis

e Logistic Regression
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Kaplan Meier Surviva
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Kaplan Meier Surviva
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AUC Results from 20 iterations of logistic
regression using ten fold cross validation

Volume Three Features | Texture Features
Analysed AUC=*o AUC=*o
Whole vol. 0.589+0.015 0.6611+0.016
Inner rind 0.558+0.011 0.679+ 0.024
Outer rind 0.598+0.011 0.689+ 0.015
Outer rind with vol. 0.583+0.013 0.699+ 0.011
Vol. excl. inner rind 0.584+0.013 0.624+ 0.015
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Conclusion

e Explored the textual radiomic features in a whole 3D tumour volume,
compared to the inside and outside rind of the tumour only, for CT images of

NSCLC.

e The derived models were compared against the previous methods of training
radiomic signatures that are descriptive of the whole tumour volume.
e Radiomic features derived solely from regions external, but neighbouring, the
tumour were shown to also have prognostic value.
e Textual features found within the tumour rinds were very similar to the textures

in the entire tumour volume, and this analysis predicted two-year survival with
an improved accuracy of 3% for survival classification using textures from the
outside rind compared to the whole volume.
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Clinical Implications

It is important to note, that there is significant clinical uncertainty in defining
the tumour boundaries of the GTV and that this should be considered when

viewing these results.
These results indicate that while the centre of the tumour is currently the

main clinical target for radiotherapy treatment, the tissue immediately around
the tumour is also clinically important.
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Future Work

« One limitation of this work is in the arbitrary selection of the radiomic
features.

 In future work we will use a machine learning algorithm such as
convolutional neural networks to determine which radiomic features
have the highest prognostic significance for determining two-year
survival.

« Furthermore the radiomic features themselves are determined based
on general mathematical formulas associated with analysing an
Image, in a future study we plan to use modern image processing
techniques to determine alternative radiomic features.
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