Learned Mixed Material Models for Efficient Clustering Based Dual-Energy CT Image Decomposition

Zhipeng Li¹, Saiprasad Ravishankar^{2,3}, Yong Long¹, Jeffrey A. Fessler²

 ¹University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
 ²Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
 ³Theoretical Division, Los Alamos National Laboratory, NM, USA

November 28, 2018

Outline of Talk

- Introduction
- 2 Dual-Energy CT (DECT) Image Decomposition Problem Formulation
- 3 DECT-MULTRA Algorithm Using Mixed Union of Learned TRAnsforms
- Experiments and Results
- Conclusions

Motivation

- Dual-Energy CT (DECT)
 - Increasingly used in many clinical applications and industrial applications.
 - Enables characterizing concentration of constituent materials in scanned objects, known as material decomposition.¹

Focus of This Talk: Image-Domain Decomposition

- Produces basis material images directly from attenuation images at low and high energies.
 - highly efficient no forward or backprojections.
 - efficacy may be limited due to sensitivity to noise and artifacts.
- Conventional Image-Domain Decomposition (without regularization)
 - Direct matrix inversion decomposition²
- Regularized (model-based) Decomposition
 - Statistical decomposition model + Prior information of the material densities.
 - Improves image quality and decomposition accuracy.

S. Ravishankar

Regularization Approches for DECT

- Non-adaptive regularization
 - Material-wise Edge-Preserving (EP)³
 - suppresses noise while retaining boundary sharpness
 - simple prior
- Learning-based (sparsity) regularization
 - Dictionary Learning
 - has shown promise for DECT⁴
 - non-convex and NP-hard sparse coding
 - Sparsifying Transform (ST) Learning
 - DECT-ST⁵: recently proposed material-wise ST method
 - DECT-MULTRA: proposed approach based on a mixed union of learned transforms model which captures both common properties and cross-dependencies of basis materials

³[Xue et al., MP, 2017]

⁴[Li et al., ISBL 20

^{5[}Li et al. ISBL 2018]

Regularization Approches for DECT

- Non-adaptive regularization
 - Material-wise Edge-Preserving (EP)³
 - suppresses noise while retaining boundary sharpness
 - simple prior
- Learning-based (sparsity) regularization
 - Dictionary Learning
 - has shown promise for DECT⁴
 - non-convex and NP-hard sparse coding
 - Sparsifying Transform (ST) Learning
 - DECT-ST⁵: recently proposed material-wise ST method
 - DECT-MULTRA: proposed approach based on a mixed union of learned transforms model which captures both common properties and cross-dependencies of basis materials

³[Xue et al., MP, 2017]

⁴[Li et al., ISBI, 2012]

⁵[Li et al., ISBI, 2018]

Outline

- Introduction
- Dual-Energy CT (DECT) Image Decomposition Problem Formulation
- OECT-MULTRA Algorithm Using Mixed Union of Learned TRAnsforms
- Experiments and Results
- Conclusions

Mixed Sparsifying Transform Model: Common and Cross Material

Mixed Union of Learned TRAnsforms (MULTRA): Training

$$\min_{\{\mathbf{\Omega}_{k_r}^r, C_{k_r}^r, \mathbf{Z}_{i_r}^r\}} \sum_{k_r=1}^{K_r'} \sum_{i_r \in C_{k_r}^r} \left\{ \|\mathbf{\Omega}_{k_r}^r \mathbf{Y}_{i_r}^r - \mathbf{Z}_{i_r}^r\|_2^2 + \eta^2 \|\mathbf{Z}_{i_r}^r\|_0 \right\}$$
s.t.
$$\mathbf{\Omega}_{k_r}^{r^T} \mathbf{\Omega}_{k_r}^r = \mathbf{I}, \ 1 \le k_r \le K_r', \tag{P0}$$

- We learn two sets of transforms, one for common-material (r=1) patches and one for cross-material (r=2) patches. (P0) is solved for each r.
- $\{\Omega^1_{k_r}\}$: set of $m \times m$ transforms for r=1. $\{\Omega^2_{k_r}\}$: $2m \times 2m$ transforms.
- ullet $\mathbf{Y}_{i_r}^r$: a vectorized training patch, $\mathbf{Z}_{i_r}^r$: sparse code.
- Each patch is grouped with one transform. $C_{k_r}^r$: set with indices of patches belonging to the $k_r^{\rm th}$ group/cluster in the $r{\rm th}$ model.
- An efficient alternating algorithm is used for joint clustering and learning⁶.

⁶[Ravishankar & Bresler, IEEE TCI, 2016]

4□ > 4□ > 4□ > 4□ > 4□ > 1□

MULTRA Model Notation during DECT Decomposition

Learned common-material transforms are used to form the blocks of the block-diagonal $\{\Omega^1_{k_1}\}$. Cross-material transforms remain unchanged.

DECT-MULTRA Formulation: Joint Clustering and Decomposition

$$\min_{\substack{\mathbf{x} \in \mathbb{R}^{2N_p}, \\ \{\mathbf{z}_j, C_{k_r}^r\}}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 + \sum_{r=1}^{2} \sum_{k_r=1}^{K_r} \sum_{j \in C_{k_r}^r} \beta \left\{ \|\mathbf{\Omega}_{k_r}^r \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2 + \gamma_r^2 \|\mathbf{z}_j\|_0 \right\}$$
(P1)

- $\mathbf{y} = (\mathbf{y}_H^T, \mathbf{y}_L^T)^T \in \mathbb{R}^{2N_p}$: attenuation maps at high and low energy.
- $\mathbf{x} = (\mathbf{x}_1^T, \mathbf{x}_2^T)^T \in \mathbb{R}^{2N_p}$: unknown material density images.
- $\mathbf{A} = \mathbf{A}_0 \otimes \mathbf{I}_{N_n}$: matrix of mass attenuation coefficients,

$$\mathbf{A}_0 = \left(\begin{array}{cc} \varphi_{1H} & \varphi_{2H} \\ \varphi_{1L} & \varphi_{2L} \end{array} \right).$$

- ullet ${f W}={f W}_j\otimes {f I}_{N_p}$: weight matrix with ${f W}_j$ being the inverse noise covariance matrix.
- $\mathbf{P}_j \in \mathbb{R}^{2m \times 2N_p}$: extracts the jth 3D patch of \mathbf{x} as a vector $\mathbf{P}_j \mathbf{x}$.
- $\mathbf{z}_i \in \mathbb{R}^{2m}$: transform sparse code of $\mathbf{P}_i \mathbf{x}$.

→ロト→団ト→ミト→ミトーミーのQで

S. Ravishankar DECT-MULTRA 10 /

Outline

- Introduction
- Dual-Energy CT (DECT) Image Decomposition Problem Formulation
- 3 DECT-MULTRA Algorithm Using Mixed Union of Learned TRAnsforms
- Experiments and Results
- Conclusions

DECT-MULTRA Methodology

Training

$$\min_{\substack{\mathbf{x} \in \mathbb{R}^{2N_p}, \\ \{\mathbf{z}_j, C_{k_r}^r\}}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 + \sum_{r=1}^2 \sum_{k_r=1}^{K_r} \sum_{j \in C_{k_r}^r} \beta \Big\{ \left\| \boldsymbol{\Omega}_{k_r}^r \mathbf{P}_j \mathbf{x} - \mathbf{z}_j \right\|_2^2 + \gamma_r^2 \left\| \mathbf{z}_j \right\|_0 \Big\}, \text{ (P1)}$$

$$\downarrow \quad \mathbf{y}$$

$$\downarrow$$

• Each step of the alternating algorithms has a closed-form update.

《□》《臺》《臺》《臺》 臺 《○○ S. Ravistankar DECT-MULTRA 12 / 24

Decomposition

Decomposition: Sparse Coding and Clustering Step

$$\min_{\{\mathbf{z}_{j}, C_{k_{r}}^{r}\}} \sum_{r=1}^{2} \sum_{k_{r}=1}^{K_{r}} \sum_{j \in C_{k_{r}}^{r}} \left\{ \left\| \mathbf{\Omega}_{k_{r}}^{r} \mathbf{P}_{j} \mathbf{x} - \mathbf{z}_{j} \right\|_{2}^{2} + \gamma_{r}^{2} \left\| \mathbf{z}_{j} \right\|_{0} \right\}.$$
 (1)

- Hard-thresholding operator $H_{\gamma}(\cdot)$ sets entries with mag. $<\gamma$ to 0.
- For each patch, the optimal cluster assignment is

$$(\hat{r}_{j}, \hat{k}_{j}) = \underset{\substack{1 \leq k_{r} \leq K_{r} \\ 1 \leq r \leq 2}}{\operatorname{arg\,min}} \left\{ \left\| \mathbf{\Omega}_{k_{r}}^{r} \mathbf{P}_{j} \mathbf{x} - H_{\gamma_{r}} (\mathbf{\Omega}_{k_{r}}^{r} \mathbf{P}_{j} \mathbf{x}) \right\|_{2}^{2} + \gamma_{r}^{2} \left\| H_{\gamma_{r}} (\mathbf{\Omega}_{k_{r}}^{r} \mathbf{P}_{j} \mathbf{x}) \right\|_{0} \right\}.$$

$$(2)$$

The optimal sparse codes are then obtained as

S. Ravishankar

$$\hat{\mathbf{z}}_j = H_{\gamma_{\hat{r}_j}}(\mathbf{\Omega}_{\hat{k}_j}^{\hat{r}_j} \mathbf{P}_j \mathbf{x}) \quad \forall j.$$
 (3)

4□ > 4団 > 4틸 > 4틸 > 1夏 · 외익()

Decomposition: Material Image Update Step

$$\min_{\mathbf{x} \in \mathbb{R}^{2N_p}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 + \sum_{r=1}^2 \sum_{k_r=1}^{K_r} \sum_{j \in C_{k_r}^r} \beta \|\mathbf{\Omega}_{k_r}^r \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2.$$
 (4)

ullet Since ${f A}$ and ${f W}$ are block-diagonal and the transforms ${f \Omega}_{k_n}^r$ are unitary, the optimum solution is obtained pixel-wise as

$$\hat{\mathbf{x}}_j = \mathbf{B}_j^{-1} (\mathbf{A}_0^T \mathbf{W}_j \mathbf{y}_j + 2\beta \mathbf{M}_j \sum_{r=1}^2 \sum_{k_r=1}^{K_r} \sum_{j \in C_{k_r}^r} \mathbf{P}_j^T \mathbf{\Omega}_{k_r}^{r^T} \mathbf{z}_j).$$
 (5)

- x̂_i is a vector with densities of materials at the jth pixel.
- M_j is a matrix that extracts components corresponding to the jth pixel.
- Update involves inverting the 2×2 matrix $\mathbf{B}_j = \mathbf{A}_0^T \mathbf{W}_j \mathbf{A}_0 + 2\beta m \mathbf{I}_2 \ \forall \ j$.

S. Ravishankar **DECT-MULTRA**

Outline

- Introduction
- Dual-Energy CT (DECT) Image Decomposition Problem Formulation
- OECT-MULTRA Algorithm Using Mixed Union of Learned TRAnsforms
- Experiments and Results
- Conclusions

Training MULTRA with XCAT phantom⁷

Common-Material Union of Transforms ($K'_1 = 15$)

• Learned from 8×8 patches extracted from five slices of water images and five slices of bone images of the XCAT phantom.

Cross-Material Union of Transforms ($K_2' = 10$)

• Learned from $8\times 8\times 2$ patches extracted from five slices of cross-material images (water and bone images stacked together to form 3D volumns).

An example of training slices.

DECT Simulation Setup

Measurements simulation:

• Image size: 1024×1024 • Pixel size: $0.49 \times 0.49 \text{ mm}^2$

• Poly-energetic source: $80 \rm kVp$ and $140 \rm kVp$ with 1.86×10^5 and 1×10^6 incident photons per ray.

• Sinogram sizes: 888×984

Reconstruct attenuation images via FBP.

• Decomposition:

 Test images: 3 different slices of the XCAT phantom.

• Image size: 512×512

• Pixel size: $0.98 \times 0.98 \text{ mm}^2$

 Optimal parameters chosen to achieve the best image quality and decompositon accuracy.

High and low energy atten. images for a test slice

Material Image Root Mean Square Error Comparisons

Table: RMSE in 10^{-3} g/cm³ of decompositions.

Method		Direct	DECT-	DECT-	DECT-
		Inversion	EP	ST	MULTRA
Slice	Water	72.8	60.9	51.3	42.8
61	Bone	68.4	60.2	51.6	43.9
Slice	Water	92.4	65.9	55.6	38.7
77	Bone	89.0	72.2	61.8	49.8
Slice	Water	116.7	69.1	61.7	38.6
150	Bone	110.8	76.7	67.0	50.8

- Direct Inversion obtains material images directly without regularization.
- DECT-MULTRA improves the RMSE achieved by nonadaptive DECT-EP.
- DECT-MULTRA with unions of transforms outperforms DECT-ST that uses learned square transforms for water and bone patches, respectively.

◆□ > ◆□ > ◆□ > ◆□ > □ □

Visual Results

Water and bone image display windows: [0.6 1.4] g/cm³ and [0 0.8] g/cm³, respectively.

Visual Results

• DECT-MULTRA outperforms DECT-ST by reducing artifacts and improving edge details.

◆□ > ◆圖 > ◆圖 > ◆圖 >

An Example of Cross-Material Clustering Results

Water and bone display windows: $[0.4 \ 1] \ g/cm^3$ and $[0 \ 0.8] \ g/cm^3$.

• Pixels are clustered by majority vote among the patches overlapping them.

4 D > 4 A > 4 B > 4 B >

Outline

- Introduction
- 2 Dual-Energy CT (DECT) Image Decomposition Problem Formulation
- OECT-MULTRA Algorithm Using Mixed Union of Learned TRAnsforms
- Experiments and Results
- Conclusions

Conclusions

- We proposed DECT-MULTRA combining PWLS estimation with regularization based on a mixed union of learned unitary transforms.
- Proposed approach exploits both the common properties among material images and their cross-dependencies.
- DECT-MULTRA provided better material image quality and decomposition accuracy than the recent DECT-ST and nonadaptive DECT-EP methods.

Future Work

 Investigate more general multi-material (with several materials) decompositions with DECT-MULTRA.

Thank You! Questions??