1. Motivation
- Frame reconstruction is critical in applications like retrieving missing frames in surveillance videos, anomaly detection, data compression, video editing, video post-processing, animation, spoofing and so on.
- When multiple frames are missing and adjacent frames within the camera are far apart, realistic coherent frames can still be reconstructed using corresponding frames from other overlapping cameras.

2. Contributions
- We tackle a novel problem of frame reconstruction in multi-camera scenario using an adversarial approach.
- We perform extensive experiments on a challenging multi-camera video dataset to show the effectiveness of our method and on a single-camera video dataset to provide qualitative comparison with the state-of-the-art.

3. Solution Overview
- We learn the representations of the missing frame conditioned on the preceding and following frames within the camera and on the corresponding frames in other overlapping cameras using CGAN.
- These representations are merged together using a weighted average where the weights are chosen by maximizing the average PSNR on a smaller validation set.

4. Network Architecture
- “U-Net”-based architecture of the generator with skip connections which directly connect encoder layers to decoder layers.
- The discriminator tries to differentiate at patch-level and runs convolutionally across the image to generate an averaged output.

5. Model Training Approach
- We use a combination of J1 loss and adversarial loss in the objective function.
- We alternate between a gradient descent step upon D and one upon G and the training maximizes $\log D(x, G(x, z))$.
- To optimize the network, we use a minibatch stochastic gradient descent with an adaptive subgradient method (Adam) and a learning rate of 0.0002.

6. Datasets and Experimental Results
- **KTH Human Action Dataset:** Single-view dataset with 6 types of human activities
 - Proposed Method: 3.05 3.03 0.93
 - Table 1: Single-view Reconstruction Performance Comparisons for KTH Human Action Dataset
- **Office Lobby Dataset:** Multi-view dataset with 3 video clips captured by 3 cameras
 - Table 2: Multi-view Reconstruction Performance for Office Lobby Dataset

7. Acknowledgements
This work was partially supported by NSF grant 1544969 from the Cyber-Physical Systems program.