Joint Content Popularity Prediction and Content Delivery Policy for Cache-Enabled D2D Networks: A Deep Reinforcement Learning Approach

Jiaying Yin1, Lixin Li1, Yang Xu1, Wei Liang1, Huisheng Zhang1, and Zhu Han2

1School of Electronics and Information, Northwestern Polytechnical University, Xi’an, CHINA
2Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
Joint content popularity prediction and content delivery policy for cache-enabled D2D Networks: A deep reinforcement learning approach

<table>
<thead>
<tr>
<th>Content</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Algorithm implementation</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Caching in communication

D2D caching

- Content placement
- Content replacement
- Content delivery

Where
Which

Based on ESN prediction

Content popularity
User mobility

SU2MD
MU2SD

DQN dynamic decision

Based on ESN and DQN content placement and delivery
Contributions in this paper:

- We propose an ESN-based algorithm to predict both the content popularity and user mobility, thus determining which content to cache and where to cache.

- A DQN-based dynamic decision optimization for request content delivery is proposed with the channel state information and content transmission delays regarded as criteria.

- We formulate a reward function by adjusting the weight coefficients to tradeoff the overall optimization goals, and simulating the performance from the perspective of D2D device and user, respectively.
The optimization goal is to maximize the cache hit rate (CHR) and reduce the overall system’s transmission delay and the transmission power consumption.

\[
\max \sum_{k=1}^{\mathcal{K}} c_k L
\]

\[
\min \left\{ \xi \sum_{t=t_1}^{T} T_{k,n}(t) + \eta \sum_{t=t_1}^{T} p_{k,n}(t) \right\}
\]

s.t. \(c_k \in \{0,1\}, \forall n \in (1,N), \forall k \in \mathcal{K} \)
Algorithm implementation

Popularity Prediction

The state of input at time t

$X(t) = [x_1(t), x_2(t), \ldots, x_K(t)]$,

The number of input layer node

$U(t) = [u_1(t), u_2(t), \ldots, u_M(t)]$,

The number of output layer node

$Y(t) = [y_1(t), y_2(t), \ldots, y_N(t)]$,

The state of output at time t
Algorithm implementation

The update of the hidden layer state and the output layer state of ESN at time $t+1$ can be expressed as:

The input layer matrix

$$U(t+1) = f(W^{in}X(t+1) + WU(t) + W^{back}Y(t)),$$

The hidden layer matrix

$$Y(t+1) = f_{out}(W^{out}[X(t+1);U(t+1)]),$$

The activation function of output layer neurons

$$W^{out} = YU^T(UU^T + I)^{-1}$$

The output layer of the previous moment to the hidden layer of the next moment

The concatenation of two vectors

The prediction results of content request distribution

The real content request distribution of user

$$\min \{ \sum_{k=m}^{N} f_{out}(W^{out}_j[X(t);U(t)]) \}.$$
Algorithm implementation

Based on ESN to predict the content popularity and user’s mobility

Content popularity

\[
X_{tk} = [x_{t1}, x_{t2}, \ldots, x_{tK}]^T
\]

\[
Y_{tk} = [p_{tk1}, p_{tk2}, \ldots, p_{tkN}]^T
\]

User’s mobility

\[
X_k = [l_{t-1,k}, l_{t-2,k}, \ldots, l_{t-L,k}]^T
\]

\[
r_{t,k} = [r_{tk1}, r_{tk2}, \ldots, r_{tkN}]^T
\]

The prediction results of content request distribution

The real content request distribution of user

The prediction results of content request distribution

The prediction results of content request distribution
Algorithm implementation

The Establishment of ESN

The network state set

\[S^t = (P^t_{k,n}, g^t_{k,n}, d^t_{k,n}) \in S = \{ P_{k,1}, P_{k,2}, \cdots P_{k,N}, g_{k,1}, g_{k,2}, \cdots g_{k,N}, d_{k,1}, d_{k,2}, \cdots, d_{k,N} \} \]

The network action set

\[A^t = (u^t_{k,n}) \in A = \{ u_{k,1}, u_{k,2}, \cdots, u_{k,N} \} \]

Reward function

\[R^t_\pi(s,a) = (\xi \frac{-d^t_{k,n}}{\log_2(1 + \sum_{k' \neq k} P^t_{k'n} g^t_{k'n} d^{-\beta t}_{k'n} + \delta^2)} - \eta \frac{d^t_{k,n} P}{g^t_{k,n} d^{-\beta t}_{k,n}}) \]

\[V(s, \pi) = \sum_{t=1}^{\infty} \gamma^{t-1} R^t_\pi(s,a) \]

\[\pi^* = \arg \max_{\pi} V(s, \pi), \forall s \in S \]
Joint content popularity prediction and content delivery policy for cache-enabled D2D Networks: A deep reinforcement learning approach

Performance

Fig. 1. Convergence performance of DQN-based algorithm under different learning rates

Fig. 2. The delivery costs with different delivery policies
Conclusions

From our studies and simulation results, we can have the following observations.

- CHR can be improved by selecting cache contents and cache location based on the ESN’s prediction results of content popularity and user’s mobility.

- DQN-based algorithm for dynamic decision-making of content delivery can decrease the delay and power consumption.

- Using different caching strategies for SBS to select caching content can improve the cache hit rate of the CCN.
Thank You

Contact: 18717382535@mail.nwpu.edu.cn