Convergence Analysis of Belief Propagation for Pairwise Linear Gaussian Models

Jian Du†
Joint Work with Shaodan Ma◊, Yik-Chung Wu†, Soummya Kar†, and José M. F. Moura†

Carnegie Mellon University†
University of Macau◊
The University of Hong Kong†

Acknowledgements: NSF under grants CCF-1513936.
Belief Propagation (BP) on Trees

- Computing *marginal distributions/modes* efficiently by exploiting the distributive law.

\[
q(x_1) \propto \int ... \int f_A(x_1) f_B(x_1, x_2, x_5) f_C(x_2, x_3) f_D(x_2, x_4) \, dx_2 \, dx_3 \, dx_4 \, dx_5 \, dx_6
\]

\[
= f_A(x_1) \int_{x_2} \int_{x_5} f_B(x_1, x_2, x_5) f_E(x_5) \left(\int_{x_3} f_C(x_2, x_3) \, dx_3 \right) \left(\int_{x_4} f_D(x_2, x_4) \, dx_4 \right) \, dx_5 \, dx_2
\]

Message from variable to factor:
1. \(m_{f_A \rightarrow 1}(x_1)\)
2. \(m_{f_B \rightarrow 1}(x_1)\)
3. \(m_{f_B \rightarrow 2}(x_2)\)

Message from factor to variable:
1. \(m_{f_C \rightarrow 2}(x_2)\)
3. \(m_{f_D \rightarrow 2}(x_2)\)

Marginal distribution:
\[
q(x_1) \propto \text{(1)} \times \text{(3)}
\]
Message Definition

- **Message from variable to factor:**

\[
m_{j \rightarrow f_n}(x_j) := p(x_j) \prod_{f_k \in B(j) \setminus f_n} m_{f_k \rightarrow j}(x_j)
\]

 e.g., \(m_{2 \rightarrow f_B}(x_2) = m_{f_D \rightarrow 2}(x_2)m_{f_C \rightarrow 2}(x_2)\)

- **Message from factor to variable:**

\[
m_{f_n \rightarrow i}(x_i) := \int \cdots \int f_n \prod_{j \in B(f_n) \setminus i} m_{j \rightarrow f_n}(x_j) d\{x_j\}_{j \in (f_n) \setminus i}
\]

 e.g., \(m_{f_B \rightarrow 1}(x_1) = \int \int f_B m_{2 \rightarrow f_B}(x_2)m_{5 \rightarrow f_B}(x_5)\) \(d x_2 d x_5\)

- **Marginal distribution**

\[
b(x_i) \propto \prod_{f_n \in B(x_i)} m_{f_n \rightarrow i}(x_i)
\]

 e.g., \(b(x_1) \propto m_{f_A \rightarrow 1}(x_1)m_{f_B \rightarrow 1}(x_1)\)
BP on Graph with Loops

- Distributive law may NOT be exploited on graph with loops

\[q(x_1) \propto \int \cdots \int f_A(x_1, x_2, x_3, x_4) f_B(x_1, x_2, x_3, x_4) \times f_C(x_1, x_2, x_3, x_4) \text{d}x_2 \text{d}x_3 \text{d}x_4 \]

- Use same message updating rule \textit{in parallel}
 - Message from \textit{variable} to \textit{factor}:
 \[m_{j \rightarrow f_n}^{(l)}(x_j) = p(x_j) \prod_{f_k \in \mathcal{B}(j) \setminus f_n} m_{f_k \rightarrow j}^{(l-1)}(x_j) \]
 - Message from \textit{factor} to \textit{variable}:
 \[m_{f_n \rightarrow i}^{(l)}(x_i) = \int \cdots \int f_n \prod_{j \in \mathcal{B}(f_n) \setminus i} m_{j \rightarrow f_n}^{(l)}(x_j) \text{d}\{x_j\}_{j \in (f_n) \setminus i} \]
 - Approximate marginal distribution:
 \[b^{(l)}(x_i) \propto \prod_{f_n \in \mathcal{B}(x_i)} m_{f_n \rightarrow i}^{(l-1)}(x_i) \]

Will \(b^{(l)}\) converge? Where will it converge? Convergence rate?
Pairwise Models: GMRF & Linear Gaussian Model

1) GMRF

\[q(x) \propto \exp \left\{ -\frac{1}{2} x^T J x + h^T x \right\} \]

\[f_i(x_i) = \exp \left(-\frac{1}{2} J_{i,i} x_i^2 + h_i x_i \right) \]

\[f_{i,j}(x_i, x_j) = \exp \left(-x_i J_{i,j} x_j \right) \]

2) Pairwise Linear Gaussian Model

\[f_i(x_j) \sim \mathcal{N}(x_j | 0, W_j) \]

\[f_{i,j}(x_i, x_j) = \mathcal{N} \left(y_{i,j} | A_{i,j} x_i + A_{i,j} x_j, R_{i,j} \right) \]
BP on GMRF

- A joint Gaussian distribution function can always be written as:

\[
p(x) \propto \exp \left(-\frac{1}{2} x^T J x + h^T x \right)
\]

\[
= \prod_{i \in \mathcal{V}} \exp \left(-\frac{1}{2} J_{i,i} x_i^2 + h_i x_i \right) \prod_{(i,j) \in \mathcal{E}_{\text{MRF}}} \exp \left(-x_i J_{i,j} x_j \right)
\]

\[\equiv f_i(x_i) \quad \text{and} \quad \equiv f_{i,j}(x_{i,j})\]

- A sufficient convergence condition, given by the spectrum radius is obtained:

\[
\rho(|I - J|) < 1 \iff \text{Walk-summable (BP converges on GMRF)}
\]

BP in Linear Gaussian Model

- In a general connected network, the local observations at every node \(n \in \mathcal{V} \) are in the form of

\[
\mathbf{y}_{i,j} = \mathbf{A}_{j,i} \mathbf{x}_i + \mathbf{A}_{i,j} \mathbf{x}_j + \mathbf{z}_{i,j} \\
\mathbf{z}_{i,j} \sim \mathcal{N}(\mathbf{z}_{i,j}|0, \mathbf{R}_{i,j}) \\
p(\mathbf{x}_i) \sim \mathcal{N}(\mathbf{x}_i|0, \mathbf{W}_i)
\]

- **The joint posterior distribution of** \([\mathbf{x}_1, \ldots, \mathbf{x}_{|\mathcal{V}|}]^T\)

\[
p(\mathbf{x}) p(\mathbf{y}|\mathbf{x}) = \prod_{i \in \mathcal{V}} p(\mathbf{x}_i) \prod_{i \in \mathcal{V}} p(\mathbf{y}_{i,j}|\mathbf{x}_i, \mathbf{x}_j, \{i, j\} \in \mathcal{E}_{\text{Net}}) \triangleq f_i \quad \triangleq f_{i,j}
\]

- **Applications for distributed estimation:**
 - distributed power state estimation,
 - distributed localization/synchronization, etc.
BP Updating Equation in Linear Gaussian Model

- The general expression for message updating from variable node to factor node is

\[
\left[C_{j \rightarrow f_{i,j}}^{(\ell)} \right]^{-1} = W_j^{-1} + \sum_{f_{k,j} \in B(j) \setminus f_{i,j}} \left[C_{f_{k,j} \rightarrow j}^{(\ell-1)} \right]^{-1}
\]

\[
v_{j \rightarrow f_{i,j}}^{(\ell)} = C_{j \rightarrow f_{i,j}}^{(\ell)} \left[\sum_{f_{k,j} \in B(j) \setminus f_{i,j}} \left[C_{f_{k,j} \rightarrow j}^{(\ell-1)} \right]^{-1} v_{f_{k,j} \rightarrow j}^{(\ell-1)} \right]
\]

- The message from factor node to variable node is

\[
\left[C_{f_{i,j} \rightarrow i}^{(\ell)} \right]^{-1} = A_{j,i}^T \left[R_{i,j} + A_{i,j} C_{j \rightarrow f_{i,j}}^{(\ell)} A_{i,j}^T \right]^{-1} A_{j,i}.
\]

\[
v_{f_{i,j} \rightarrow i}^{(\ell)} = A_{j,i}^T \left[R_{i,j} + A_{i,j} C_{j \rightarrow f_{i,j}}^{(\ell)} A_{i,j}^T \right]^{-1} \left(y_{i,j} - A_{i,j} v_{j \rightarrow f_{i,j}}^{(\ell)} \right)
\]

like a Kalman Gain

local innovation

cooperative innovation
Convergence Property

\[
[C_{f_{i,j}\rightarrow i}^{(\ell)}]^{-1} = A_{j,i}^T \left[R_{i,j} + A_{i,j} \left[W_j^{-1} + \sum_{f_k,j \in B(j) \setminus f_{i,j}} [C_{f_{k,j}\rightarrow j}^{(l-1)}]^{-1} \right]^{-1} A_{i,j} \right]^{-1} A_{j,i}
\]

Theorem 1. The matrix sequence \(\left\{ [C_{f_{i,j}\rightarrow i}^{(0)}]^{-1} \right\}_{l=0,1,...} \) converges to a unique positive definite matrix for any initial covariance matrix \([C_{f_{i,j}\rightarrow i}^{(0)}]^{-1} \preceq 0 \) for all \(i,j \in V \)
Convergence Rate

- Convergence rate with respect to part metric:

 Part (Birkhoff) Metric: For arbitrary square matrices X and Y with the same dimension, if there exists $\alpha \geq 1$ such that $\alpha X \succeq Y \succeq \alpha^{-1}X$, X and Y are called the parts, and $d(X, Y) \triangleq \inf \{ \log \alpha : \alpha X \succeq Y \succeq \alpha^{-1}X, \alpha \geq 1 \}$ defines a metric called the part metric.

 $$d \left(C^{(\ell)}, C^* \right) < \beta^\ell d \left(C^{(0)}, C^* \right), \quad 0 < \beta < 1.$$

Theorem 2. With the initial covariance matrix set to be an arbitrary p.s.d. matrix, i.e., $\left[C_{fi,j \to i}^{(0)} \right]^{-1} \succeq 0$, the sequence $\left\{ \left[C_{fi,j \to i}^{(0)} \right]^{-1} \right\}_{l=0}^{\infty}$ converges at a geometric rate with respect to the part metric.
Convergence Rate

- Convergence rate with respect to part metric:
 \[d \left(C^{(\ell)}, C^* \right) < \beta^\ell d \left(C^{(0)}, C^* \right), \quad 0 < \beta < 1. \]

- From Part metric to monotone norm
 \[\| J^{(\ell)} - J^* \| \leq \left(2 \exp \left\{ d \left(J^{(\ell)}, J^* \right) \right\} - \exp \left\{ -d \left(J^{(\ell)}, J^* \right) \right\} - 1 \right) \min \left\{ \| J^{(\ell)} \|, \| J^* \| \right\}. \]

 \[\| J^{(\ell)} - J^* \| < 2 \zeta \exp \left\{ c^\ell d_0 \right\}, \quad c < 1. \]

Theorem 3. With the initial covariance matrix set to be an arbitrary p.s.d. matrix, i.e., \(\left[C_{f_n \to i}^{(0)} \right]^{-1} \geq 0 \), the sequence \(\left\{ C^{(\ell)} \right\}_{\ell=0,1,...} \) converges at a double exponential rate in terms of the monotone norm.
Convergence Property

- Updating equation

\[v^{(\ell)}_{j \rightarrow f_{i,j}} = b_{j \rightarrow f_{i,j}} - C^*_{j \rightarrow f_{i,j}} \sum_{f_{k,j} \in B(j) \setminus f_{i,j}} C^*_{f_{k,j} \rightarrow j} M_{k,j} A_{j,k} v^{(\ell)}_{k \rightarrow f_{k,j}}, \]

\[v^{(\ell)} = -Qv^{(\ell-1)} + b. \]

Theorem 4. The belief mean converges to the optimal value if and only if \(\rho(Q) < 1 \). The matrix \(Q \) satisfies \(v^{(\ell)} = Qv^{(\ell-1)} + b \) with \(v^{(\ell)} \) being a vector containing all the \(v^{(\ell)}_{j \rightarrow f_n} \).

- A *distributed* sufficient convergence condition

Theorem 5. The belief mean converges to the optimal value if the spectrum radius of block diagonal (each block’s dim. equals the corresponding variable’s dim.) of \(QQ^T \) is smaller than 1.
LGM subsumes Walk-Summable GMRF (I)

- A joint Gaussian distribution function can always be written as:

\[
p(x) \propto \exp \left(-\frac{1}{2} x^T J x + h^T x \right) = \prod_{i \in V} \exp \left(-\frac{1}{2} J_{i,i} x_i^2 + h_i x_i \right) \prod_{(i,j) \in E_{\text{MRF}}} \exp \left(-x_i J_{i,j} x_j \right) \]

\[\triangleq f_i(x_i) \triangleq f_{i,j}(x_{i,j})\]

\[
\rho(|I - J|) < 1 \iff \text{Walk-summable (BP converges on GMRF)}
\]

- Converged linear Gaussian model subsumes walk-summable GMRF.

Valid Models ($J > 0$)

Linear Gaussian Models

Walk-summable GMRF

Diagonally dominant
LGM subsumes Walk-Summable GMRF (II)

- Distributive law may NOT be exploited on graph with loops

\[p(x) \propto \exp \left(-\frac{1}{2} x^T J x + h^T x \right) \]

\[\propto \exp \left\{ -\frac{1}{2} x^T (J - \omega I) x - \frac{1}{2} \omega x^T x + h^T x \right\} \]

\[= \exp \left\{ -\frac{1}{2} (V^T x)^T (V^T x) - \frac{1}{2} (\omega x^T x - 2h^T x) \right\} \]

\[\propto \exp \left\{ -\frac{1}{2} \sum_{n=1}^{M} (V_{n,n_i} x_{n_i} + V_{n,n_j} x_{n_j})^2 - \frac{1}{2} \sum_{n=1}^{M} \omega(x_n - \frac{h_n}{\omega})^2 \right\} \]

- Let \(0 < \omega < 1 \) and \(\omega \) is smaller than the minimum eigenvalue of \(I - |R| \).

\[q(x) \propto \prod_{n=1}^{M} \mathcal{N}(x_n | \frac{1}{\omega} h_n, \frac{1}{\omega}) \prod_{n=1}^{M} \mathcal{N}(0 | V_{n,n_i} x_{n_i} + V_{n,n_j} x_{n_j}, 1) \cdot \]

Moallemi and Roy, TIT 2009
LGM subsumes Walk-Summable GMRF (III)

- H-Matrices

Definition H-Matrices (Boman et al. 2015): A matrix X is an H-matrix if all eigenvalues of the matrix $H(X)$, where $[H(X)]_{i,i} = |X_{i,i}|$, and $[H(X)]_{i,j} = -|X_{i,j}|$ have positive real parts.

Factor width at most 2 factorization (Boman et al. 2015): A symmetric H-matrix X that has non-negative diagonals can always be factorized as $X = VV^T$, where V is a real matrix with each column of V containing at most 2 non-zeros.

$(1 - \omega)I - R$ is an H matrix.

$(1 - \omega)I - R = J - \omega I = VV^T$, where each column of V contains at most 2 non-zeros.
Conclusion

- Existing convergence analysis of GMRF can not be used for distributed inference in linear Gaussian models.

- Belief covariance of BP in pairwise linear Gaussian models
 - converges to a unique positive definite matrix for arbitrary positive definite initial value.
 - converges at a doubly exponential rate.

- Necessary and sufficient convergence condition of belief mean
- The convergence condition of pairwise linear Gaussian models subsumes walk-summable GMRF.

Thank you!
\[J = \begin{bmatrix}
1 & \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{3} \\
\frac{1}{3\sqrt{2}} & 1 & 0 & \frac{1}{3} \\
\frac{1}{\sqrt{3}} & 0 & 1 & \frac{1}{\sqrt{6}} \\
\frac{\sqrt{2}}{3} & \frac{1}{3} & \frac{1}{\sqrt{6}} & 1
\end{bmatrix}. \]

The eigenvalues of \(I - |R| \) to 4 decimal places are \(-0.0754\), \(0.9712\), \(1.4780\), and \(1.6262\). According to the walk-summable definition in, it is non walk-summable and the convergence condition is inconclusive as to whether Gaussian BP converges.
References