Overview

We propose a deep learning method for adding new classes to a given
classifier without access to the original data.

This problem arises frequently since models are often shared without
their training data, due to privacy and data ownership concerns.

We modify the original classifier by retraining a suitable subset of
layers using a knowledge-distillation regularization

The achieved accuracy is almost as good as that obtained by a
system trained from both the original and new classes.

Problem formulation

= We are given a classifier C4 for k original classes A = {1,2,...,k} and
training data for m new classes B = {k+1,....k+m}.

« We wish to build an extended classifier C' 45, that can handle samples
from all classes A U B.

= We can access to the parameters of C'4 but not its training data.
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Challenges

= Catastrophic Forgetting

= Forget previously learned information upon learning new one
= Privacy

= No samples from original classes at training time
= In contrast to [ransfer Learning, we interested in the

extended class-set, rather than the new one
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Our training approach Classification Results

« Retrain a subset of the layers of C'4

NIST-2015 (50 languages) CIFAR-100 (100 image classes)

Motivated by Transfer Learning

« Use a regularized term:

Motivated by Knowledge Distillation
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Compared Methods

NIST-2015

= Accuracy improves as we retrain more layers

Baselines:

CIFAR-100
original original = When percentage of original classes is low performance improves as more layers
classes classes are retrained
= When percentage of original classes is high retraining all weights damages
performance
I I NIST-2015 vs. CIFAR-100
cI:(::‘;s « CIFAR-100 consists of raw images, while NIST-2015 consists of well-tuned and

high-level features
Original model Adding new classes (ACWOD)

Our approach: Analyzing the weight of the regularization
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Upper bound:
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classes e = € is linearly proportional to the number of original classes.
= inpu

= frozen layers
==retrainable layers

= As more layers are retrained, € is bigger.

= Methods which constraint network layers (ACWOD, residual-block),

allow the re-trainable layers to better adapt, using a smaller e.

train with all data




