

What's the problem?

Dimensional sentiment analysis (DSA), which represents affective states as **continuous numerical** values on multiple dimensions, such as valence-arousal (VA) space, allows for more fine-grained analysis than the traditional categorical approach.

In dimensional sentiment analysis, an affective lexicon enriched with dimensional sentiment values is a key and necessary resource.

However, such a lexicon in a reasonable scale usually **does not** exist, and building such a lexicon costs much.

Motivation: targeting at the above problem, how to expand a small seed lexicon automatically.

Input: given a seed lexicon L, which contains V words and annotates each word with numerical valence-arousal ratings, a new word W_{new} , and other resources allowed (open). **Output:** the VA ratings of the word W_{new} .

Two-dimensional valence-arousal space

The valence represents the degree of pleasant and unpleasant feelings, while the arousal describes the degree of excitement and calm.

Learning Dimensional Sentiment of Traditional Chinese Words with Word Embedding and Support Vector Regression

libaoli@gmail.com Department of Computer Science, Henan University of Technology, Zhengzhou, China

Learning Word Dimensional Sentiment using Word **Embedding and Support Vector Regression**

- each dimension corresponds to a seed word
- to facilitate the similarity calculation.
- of the seed word.
- with the trained SVR model.

Experiments and Results

Datasets

Chinese words.

Settings

- negative sampling.
- collected from the website http://www.txttw.com. package.
- (**PCC**) for evaluation.

Baoli Li

Build a valence-arousal space (VAS) with all the seed words: 2. Position a (seed or new) word into a point in the VAS: the value at each dimension is determined by the similarity between the word and the seed word linked to that dimension. We use word embedding on a large traditional Chinese corpus

Derive a training data set **TD** with the seed words: each sample from a seed word corresponds to a point in the VAS space, and its prediction value is the valence or arousal value

Train a Support Vector Regression model based on TD. To predict the valence or arousal value of a new word, get the point of the new word in the VAS space, and make prediction

> **Example 1: Input: 0002,**痛苦 **Output: 0002, 2.4, 6.8 Example2: Input: 0004, 放**鬆 **Output:** 0004, 6.2, 2.0

• IALP2016 Shared Task: The Chinese Valence-Arousal Words (CVAW) lexicon, which contains 1,653 affective words annotated with valence-arousal ratings (1-9), is given as training data. Average valence rating of the 1,653 words is **4.495**, and average arousal rating is 5.745. The test data consists of 1,149 traditional

• Use **Word2vec** package for word embedding: CBOW model,

• Large corpus (56,501,758 words) of fictions and proses • For support vector regression, we use the popular Libsvm

• Mean absolute error (MAE) and Pearson correlation coefficient

Results Metric System HAUT1 HAUT2 BASELINE Best Result Average Worst Result Baseline A (5.0, 5.0)Baseline B (4.5, 5.7) Metric Va MA Size 1000.64 200 0.60300 0.60 400 0.60 0.60 500

Table 3 Performance with different Min-count values

Metric Min- Count	V- MAE	V- PCC	A- MAE	A- PCC	MED	#OO V_Tr	#OO V_Te
2	0.610	0.777	1.282	0.613	1.519	16	5
3	0.605	0.778	1.278	0.609	1.512	24	8
4	0.609	0.782	1.287	0.610	1.519	30	12
5	0.612	0.778	1.279	0.619	1.515	35	16
6	0.610	0.774	1.255	0.617	1.497	36	20
7	0.621	0.769	1.267	0.610	1.510	39	24
8	0.624	0.769	1.271	0.608	1.515	45	28
9	0.616	0.773	1.264	0.610	1.505	49	33
10	0.610	0.772	1.274	0.612	1.511	58	35

Table 1. The official Results of the IALP-2016 shared task

		Valence		Arousal			
/	MAE	PCC	Rank by Mean Rank	MAE	PCC	Rank by Mean Rank	
	0.615	0.780	15	1.285	0.607	12	
	0.605	0.778	12	1.278	0.609	7	
	1.407	0.674	29	1.567	0.473	28	
	0.577	0.865	N/A	0.953	0.671	N/A	
	0.788	0.766	N/A	1.251	0.479	N/A	
	1.735	0.35	N/A	1.567	0.169	N/A	
	1.013	0	N/A	0.979	0	N/A	
	1.028	0	N/A	1.423	0	N/A	

Table 2 Performance with different size of embedding vectors

lence AE	Valence PCC	Arousal MAE	Arousal PCC	MED
44	0.772	1.283	0.616	1.532
05	0.778	1.278	0.609	1.512
04	0.769	1.280	0.592	1.519
05	0.758	1.296	0.584	1.537
07	0.757	1.298	0.575	1.543