Order Dispatching in Ride-Sharing Platform under Travel Time Uncertainty: A Data-Driven Robust Optimization Approach (Paper ID: 40)

Affiliations: Concordia University, Ericsson Incorporation
Authors: Xiaoming Li, Jie Gao, Chun Wang, Xiao Huang, Yimin Nie
Presented by: Xiaoming Li
➢ Introduction to Ride-Sharing in Mobility on Demand Systems
➢ Problem Description
➢ Methodology and Formulation
➢ Experimental Results
➢ Conclusions and Future Work
Introduction to Ride-Sharing in Mobility on Demand Systems

- Ride-sharing platforms such as Uber, Lyft, and Didi have reshaped the transportation mode.
- Ride-sharing is a transportation mode where the travelers have similar itineraries in mobility on demand systems.
- Merits and advantages for both riders (demand side) and drivers (supply side). Reduce cost by sharing, reduce traffic congestion by decreasing fleet, etc.

Source: https://disrupt-africa.com/2016/12/20/ride-sharing-platform-gawana-to-launch-in-rwanda/
Introduction to Ride-Sharing in Mobility on Demand Systems

Problem Description

Methodology and Formulation

Experimental Results

Conclusions and Future Work
Problem Description

- A set of drivers, a set of riders, and a central operator for the ride-sharing platform
- Travelers (drivers / riders) claim their origins and destinations (coordinates) as well as their earliest departure times and latest arrival times
- Travel time is considered under uncertainty
- One-to-one matching to find the optimal solutions such that the overall travel time savings is maximized under worse-case scenario (maximum travel time delay)
➢ Introduction to Ride-Sharing in Mobility on Demand Systems
➢ Problem Description
➢ Methodology and Formulation
➢ Experimental Results
➢ Conclusions and Future Work
Methodology and Formulation

- Robust optimization. To maximize the overall travel time saving under worst-case scenario (maximum travel time delay), while a group of constraints must be satisfied.

- The construction of uncertainty set. The nominal travel time and travel time deviation are assumed to be time-series data. Therefore, time-series forecasting approach (ARIMA in this work) is introduced.

\[U_1 = \{ \xi \mid \| \xi \|_1 \leq \Gamma \} = \left\{ \xi \mid \sum_{j \in J_i} |\xi_j| \leq \Gamma \right\} \]

- The derived uncertainty set will be used as the input for the robust optimization model.
Methodology and Formulation

\[
\max \sum_{d \in \mathcal{D}^k} \sum_{r \in \mathcal{R}^k} \left(\bar{T}^0_{d,r} x_{d,r} + \min_{\xi \in \mathcal{U}} \xi_{d,r} \bar{T}^0_{d,r} x_{d,r} \right) \tag{2}
\]

s.t.

\[
\bar{T}^0_{d,r} + \min_{\xi \in \mathcal{U}} \xi_{d,r} \bar{T}^0_{d,r} + H(1 - x_{d,r}) \geq 0, \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \tag{2a}
\]

\[
dt_d \geq cs(d), \quad \forall d \in \mathcal{D}^k, \tag{2b}
\]

\[
dt_d + \bar{T}_{o(d),o(r)} + \min_{\xi \in \mathcal{U}} \xi_{o(d),o(r)} \bar{T}_{o(d),o(r)} + H(1 - x_{d,r}) \geq cs(r), \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \tag{2c}
\]

\[
dt_d + \bar{T}_{d,r} + \min_{\xi \in \mathcal{U}} \xi_{d,r} \bar{T}_{d,r} \leq la(r) + H(1 - x_{d,r}), \quad \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \tag{2d}
\]

\[
dt_d + \bar{T}_{d,r} + \min_{\xi \in \mathcal{U}} \xi_{d,r} \bar{T}_{d,r} \leq la(d) + H(1 - x_{d,r}), \quad \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \tag{2e}
\]

\[
\sum_{r \in \mathcal{R}} x_{d,r} \leq 1, \quad \forall d \in \mathcal{D}^k, \tag{2f}
\]

\[
\sum_{d \in \mathcal{D}} x_{d,r} \leq 1, \quad \forall r \in \mathcal{R}^k, \tag{2g}
\]

\[
x_{d,r} \in \{0,1\}, \quad \forall d \in \mathcal{D}^k, \forall r \in \mathcal{R}^k, \tag{2h}
\]

\[
dt_d \in \mathbb{R}_+, \quad \forall d \in \mathcal{D}^k, \tag{2i}
\]
Outline

- Introduction to Ride-Sharing in Mobility on Demand Systems
- Problem Description
- Methodology and Formulation
- Experimental Results
- Conclusions and Future Work
Experimental Results

- Experiment setup. Python 3.7, Gurobi 9.0, Intel Core i7 CPU, 32 GB RAM, Win 10
- Data sets. New York taxi trip records, January 2017 – June 2017. Seven regions and six time slots are selected.

<table>
<thead>
<tr>
<th>Time Slots No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. of Rider</td>
<td>33</td>
<td>209</td>
<td>102</td>
<td>158</td>
<td>67</td>
<td>153</td>
</tr>
<tr>
<td>Num. of Drivers</td>
<td>40</td>
<td>251</td>
<td>123</td>
<td>190</td>
<td>81</td>
<td>184</td>
</tr>
</tbody>
</table>
The comparison of average travel time savings

<table>
<thead>
<tr>
<th>Time Slots \ Γ</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/01/2017 00</td>
<td>1.88</td>
<td>1.85</td>
<td>1.73</td>
<td>1.69</td>
<td>1.50</td>
<td>1.49</td>
<td>1.21</td>
<td>0.93</td>
<td>0.74</td>
<td>0.62</td>
<td>0.52</td>
</tr>
<tr>
<td>(16.8%)</td>
<td></td>
<td></td>
<td>(22.5%)</td>
<td>(27.2%)</td>
<td>(92.3%)</td>
<td>(112.8%)</td>
<td>(83.3%)</td>
<td>(89.7%)</td>
<td>(87.9%)</td>
<td>(79.3%)</td>
<td></td>
</tr>
<tr>
<td>06/01/2017 00</td>
<td>1.61</td>
<td>1.51</td>
<td>1.36</td>
<td>0.97</td>
<td>0.78</td>
<td>0.7</td>
<td>0.66</td>
<td>0.58</td>
<td>0.39</td>
<td>0.33</td>
<td>0.29</td>
</tr>
<tr>
<td>(3.3%)</td>
<td></td>
<td></td>
<td>(2.6%)</td>
<td>(3.8%)</td>
<td>(1.0%)</td>
<td>(2.2%)</td>
<td>(1.5%)</td>
<td>(3.3%)</td>
<td>(18.0%)</td>
<td>(8.3%)</td>
<td></td>
</tr>
<tr>
<td>06/01/2017 17</td>
<td>1.57</td>
<td>1.55</td>
<td>1.53</td>
<td>1.47</td>
<td>1.44</td>
<td>1.41</td>
<td>1.35</td>
<td>1.26</td>
<td>1.15</td>
<td>1.05</td>
<td>0.91</td>
</tr>
<tr>
<td>(3.3%)</td>
<td></td>
<td></td>
<td>(2.6%)</td>
<td>(3.8%)</td>
<td>(1.0%)</td>
<td>(2.2%)</td>
<td>(1.5%)</td>
<td>(3.3%)</td>
<td>(18.0%)</td>
<td>(8.3%)</td>
<td></td>
</tr>
<tr>
<td>06/01/2017 17</td>
<td>1.52</td>
<td>1.51</td>
<td>1.48</td>
<td>1.46</td>
<td>1.43</td>
<td>1.38</td>
<td>1.33</td>
<td>1.22</td>
<td>1.11</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td>(3.3%)</td>
<td></td>
<td></td>
<td>(2.6%)</td>
<td>(3.8%)</td>
<td>(1.0%)</td>
<td>(2.2%)</td>
<td>(1.5%)</td>
<td>(3.3%)</td>
<td>(18.0%)</td>
<td>(8.3%)</td>
<td></td>
</tr>
<tr>
<td>06/03/2017 00</td>
<td>1.79</td>
<td>1.76</td>
<td>1.74</td>
<td>1.73</td>
<td>1.72</td>
<td>1.69</td>
<td>1.57</td>
<td>1.51</td>
<td>1.33</td>
<td>1.17</td>
<td>1.02</td>
</tr>
<tr>
<td>(42.1%)</td>
<td></td>
<td></td>
<td>(44.3%)</td>
<td>(20.7%)</td>
<td>(54.5%)</td>
<td>(53.6%)</td>
<td>(70.7%)</td>
<td>(70.6%)</td>
<td>(75.0%)</td>
<td>(77.3%)</td>
<td>(61.9%)</td>
</tr>
<tr>
<td>06/03/2017 00</td>
<td>1.26</td>
<td>1.22</td>
<td>1.16</td>
<td>1.14</td>
<td>1.12</td>
<td>0.99</td>
<td>0.92</td>
<td>0.92</td>
<td>0.76</td>
<td>0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>(4.7%)</td>
<td></td>
<td></td>
<td>(6.7%)</td>
<td>(6.5%)</td>
<td>(12.1%)</td>
<td>(17.5%)</td>
<td>(25.4%)</td>
<td>(25.9%)</td>
<td>(30.8%)</td>
<td>(48.1%)</td>
<td>(47.8%)</td>
</tr>
<tr>
<td>06/03/2017 17</td>
<td>1.77</td>
<td>1.77</td>
<td>1.75</td>
<td>1.64</td>
<td>1.58</td>
<td>1.54</td>
<td>1.48</td>
<td>1.31</td>
<td>1.23</td>
<td>1.17</td>
<td>0.99</td>
</tr>
<tr>
<td>(1.1%)</td>
<td></td>
<td></td>
<td>(4.7%)</td>
<td>(6.7%)</td>
<td>(6.5%)</td>
<td>(12.1%)</td>
<td>(17.5%)</td>
<td>(25.4%)</td>
<td>(25.9%)</td>
<td>(30.8%)</td>
<td>(48.1%)</td>
</tr>
<tr>
<td>06/03/2017 17</td>
<td>1.75</td>
<td>1.69</td>
<td>1.64</td>
<td>1.54</td>
<td>1.41</td>
<td>1.31</td>
<td>1.18</td>
<td>1.04</td>
<td>0.94</td>
<td>0.79</td>
<td>0.67</td>
</tr>
<tr>
<td>(28.5%)</td>
<td></td>
<td></td>
<td>(27.9%)</td>
<td>(29.0%)</td>
<td>(27.5%)</td>
<td>(26.9%)</td>
<td>(29.6%)</td>
<td>(40.5%)</td>
<td>(53.4%)</td>
<td>(63.0%)</td>
<td>(60.2%)</td>
</tr>
<tr>
<td>06/18/2017 00</td>
<td>2.21</td>
<td>2.20</td>
<td>2.18</td>
<td>2.13</td>
<td>2.12</td>
<td>2.10</td>
<td>2.08</td>
<td>2.04</td>
<td>1.94</td>
<td>1.81</td>
<td>1.57</td>
</tr>
<tr>
<td>(28.5%)</td>
<td></td>
<td></td>
<td>(27.9%)</td>
<td>(29.0%)</td>
<td>(27.5%)</td>
<td>(26.9%)</td>
<td>(29.6%)</td>
<td>(40.5%)</td>
<td>(53.4%)</td>
<td>(63.0%)</td>
<td>(60.2%)</td>
</tr>
<tr>
<td>06/18/2017 00</td>
<td>1.72</td>
<td>1.72</td>
<td>1.69</td>
<td>1.67</td>
<td>1.67</td>
<td>1.62</td>
<td>1.48</td>
<td>1.33</td>
<td>1.19</td>
<td>1.13</td>
<td>1.12</td>
</tr>
<tr>
<td>(27.2%)</td>
<td></td>
<td></td>
<td>(26.2%)</td>
<td>(30.2%)</td>
<td>(30.7%)</td>
<td>(30.4%)</td>
<td>(33.3%)</td>
<td>(31.3%)</td>
<td>(40.7%)</td>
<td>(38.6%)</td>
<td>(46.2%)</td>
</tr>
<tr>
<td>06/18/2017 17</td>
<td>1.47</td>
<td>1.45</td>
<td>1.39</td>
<td>1.37</td>
<td>1.35</td>
<td>1.32</td>
<td>1.28</td>
<td>1.18</td>
<td>1.14</td>
<td>1.06</td>
<td>1.02</td>
</tr>
<tr>
<td>(19.4%)</td>
<td></td>
<td></td>
<td>(20.4%)</td>
<td>(23.4%)</td>
<td>(27.9%)</td>
<td>(31.0%)</td>
<td>(36.9%)</td>
<td>(36.8%)</td>
<td>(39.4%)</td>
<td>(44.6%)</td>
<td>(51.9%)</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.85</td>
<td>1.83</td>
<td>1.79</td>
<td>1.74</td>
<td>1.69</td>
<td>1.67</td>
<td>1.56</td>
<td>1.45</td>
<td>1.33</td>
<td>1.23</td>
<td>1.08</td>
</tr>
<tr>
<td>Avg. (19.4%)</td>
<td></td>
<td></td>
<td>(20.4%)</td>
<td>(23.4%)</td>
<td>(27.9%)</td>
<td>(31.0%)</td>
<td>(36.9%)</td>
<td>(36.8%)</td>
<td>(39.4%)</td>
<td>(44.6%)</td>
<td>(51.9%)</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.55</td>
<td>1.52</td>
<td>1.45</td>
<td>1.36</td>
<td>1.29</td>
<td>1.22</td>
<td>1.14</td>
<td>1.04</td>
<td>0.92</td>
<td>0.81</td>
<td>0.76</td>
</tr>
</tbody>
</table>
The comparison of violation rates

- The metric to measure the robustness of solution (the unmatched rates of rider)

Fig. 3: Comparison of violation rates by data-driven robust optimization and non-data-driven robust optimization
Outline

➢ Introduction to Ride-Sharing in Mobility on Demand Systems
➢ Problem Description
➢ Methodology and Formulation
➢ Experimental Results
➢ Conclusions and Future Work
Conclusions and Future Work

- **Conclusions.** We propose a data-driven robust optimization approach to address order dispatching in ride-sharing platform. The framework organically integrates time-series predictor and robust optimization model.

- **Future work.**
 - To extend one-to-one driver and rider matching to one-to-many matching (i.e., one driver can pick up more than one rider).
 - To utilize different types of uncertainty sets to validate the performance of robust optimization models.
Thank you!

Questions?