Integrated Classification and Localization of Targets using Bayesian Framework in Automotive Radar

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

A. Dubey, A. Santra, J. Fuchs, M. Lübke, R. Weigel and F. Lurz

Institute for Electronics Engineering,
FAU Erlangen-Nürnberg, Germany
Content

• Problem Statement
• Contribution
• Results
• Conclusion
Problem Statement (1/2) – Feature Similarity
Problem Statement (2/2) – Conventional Tracker

Problem
- Target Association
- Target Classification

Contribution
- Augmented State Vector +
- Bayesian Gating
- Feature tracking

FP due to wrong target association
Bayesian Integrated Framework (1/2)

Deep Metric Learning + VAE – Training (1/2)

a) TNN

b) TVAE

Shared Encoder CNN

Shared Decoder CNN

Classification
Deep Metric Learning + VAE – Training (2/2)

1) Online Triplet Mining

2) Loss function:

\[\mathcal{L}_{\text{TVAE}} = \alpha \cdot \mathcal{L}_{\text{reconstruction}} + (1 - \alpha) \cdot (\mathcal{L}_{\text{KL}} + \mathcal{L}_{\text{triplet}}) \]
Bayesian Integrated Framework (2/2)

Augmented Bayesian Tracker – Inference (1/2)
Integrated Bayesian Tracker – Inference (2/2)

1. Augmented State Vector

\[x_a = \begin{bmatrix} px & py & v & Az & \mu_{11} & \mu_{12} & \cdots & \mu_{1M} \end{bmatrix}^T \]

\[g(x_a) = \begin{bmatrix} px^P & py^P & v^P & Az^P & \mu_{11}^P & \cdots & \mu_{1M}^P \end{bmatrix}^T \]

2. Gating

\[d_{det} = (z^p - z^m)S_{det}^{-1}(z^p - z^m)^T \]
\[d_{cls} = (E^p - E^m)S_{cls}^{-1}(E^p - E^m)^T \]
Results (1/2) – Classification Accuracy

Accuracy = 75.56%

Accuracy = 98.1%

0 – female; 1 – male; 2 – teen; 3 – cycle1; 4 – cycle2; 5 – cycle3
Results (1/2) – Tracking Association
Summary

Conclusion

✓ Target Association
✓ Integrated Target Classification

Future Work

☐ Uncertainty Analysis
☐ Distance Learning between feature embedding