ICA BASED SINGLE MICROPHONE BLIND SPEECH SEPARATION TECHNIQUE

USING NON-LINEAR ESTIMATION OF SPEECH

Chandan K. A. Reddy, Anshuman Ganguyl and Issa Panahi

Statistical Signal Processing Research Laboratory (SSPRL)

Dept. of Electrical and Computer Engineering, University of Texas at Dallas, Richardson TX

1. MOTIVATION

- From a single microphone input, we create 2 input signals to perform ICA for separating 2 sources of speech and noise.
- One input signal is the noisy speech signal.
- The second input is created by an initial estimate of speech from the noisy signal using a non-linear estimator and minimization of mean square error of log magnitude spectrum.
- The two input ICA is then performed followed by a LogMMSE stage to obtain improved speech enhancement.

2. CHOICE OF SPEECH ESTIMATOR

- Determining which method of speech estimation is suitable for enhancing the performance of ICA by using mutual information

3. PROPOSED METHOD

\[x(n) = s(n) + d(n) \]

\[SCSE \rightarrow \hat{s}_2(n) \rightarrow ICA \rightarrow \hat{s}_3(n) \rightarrow LogMMSE \]

- We use our best choice of Single Channel Speech Enhancement (SCSE) to estimate speech and give it as one input to ICA and noisy speech as the other.
- This decomposition helps to preserve the integrity of speech from noisy speech \(x(n) \).
- LogMMSE Speech Enhancement technique is used to reduce the residual noise in the second stage.

4. EXPERIMENTAL RESULTS

- Machine
- Traffic
- Martial
- Basketball

- Time in seconds
- Frequency

5. SPECTRAL COMPARISON

ACKNOWLEDGEMENT

This work was supported by the National Institute of the Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health (NIH) under award number 1R01DC015430-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

KEY REFERENCES

http://www.utdallas.edu/ssprl/