Key Points

- We tackle the hyperspectral super-resolution problem using matrix factorization and first-order optimization.
- We devise a novel inexact block coordinate descent method which employs hybrid proximal gradient and Frank-Wolfe updates.

Hyperspectral Super-Resolution (HSR)

- **Spectral sensors:** capture scenes in multiple spectral bands
 - Hyperspectral (HS) sensors
 - Specifications:
 - WORIS
 - HYSpRIS
 - P-1 LA
 - Sensor number: 294
 - Wavelength range: 0.4 - 2.5 μm
 - Spatial resolution: 20 m
 - HSI image has low-spatial and high-spectral resolution.
 - Multispectral (MS) sensors
 - Specifications:
 - Sensor number: 96
 - Wavelength range: 0.4 - 1.5 μm
 - Spatial resolution: 1.2 m
 - MS image has high-spectral and low-spatial resolution.

- **Super-resolution (SR), high spatial-spectral resolution, sensors? Not exist.**

- **HSR:** recover an SR image from an HS-MS image pair.

- **Applications:** high-spectral-resolution mapping of, e.g., minerals, urban surface materials, plant species, etc.

Problem Statement

- **Signal model:**
 - MS image model: \(Y_S = F X + V_S \)
 - HS image model: \(Y_H = X G + V_H \)
 - \(X \in \mathbb{R}^{N \times M} \) is the spectral-spatial matrix of the MS image;
 - \(Y_S \in \mathbb{R}^{N \times S} \) is the spectral-spatial matrix of the MS image;
 - \(Y_H \in \mathbb{R}^{N \times H} \) is the spectral degradation matrix;
 - \(G \in \mathbb{R}^{H \times M} \) is the spectral degradation matrix;
 - \(V_S \) and \(V_H \) are noise.

- **Assumption:** The SR image has low rank, i.e., \(X \approx AS \)
 - \(N < \min(M, L) \)
 - \(A \) and \(S \) follow the linear mixture model
 - \(A \in \mathbb{R}^{M \times L} \)
 - \(S \in \mathbb{R}^{N \times K} \) where \(S = [s_1, \ldots, s_K] \text{ and } K = 1, \ldots, N \).

- **Structured matrix factorization (SMF) formulation:**
 - \(A \) and \(S \) follow the linear mixture model.
 - \(A \in \mathbb{R}^{M \times L} \) and \(S \in \mathbb{R}^{N \times K} \).
 - \(A \) is from an abundance map of the AVIRIS Cuprite dataset;
 - \(S \) is from an abundance map of the FUMI-2016 dataset.

- **Exact Block Coordinate Descent (EBCD):**
 - Exact BCD works by recursively solving
 - \(S^{t+1} = \arg \min_{S} f(A, S) \)
 - \(A^{t+1} = \arg \min_{A} f(A, S^{t+1}) \)
 - It guarantees convergence to a stationary point of the SMF for HSR.

Simulations

- **Algorithms under comparison:**
 - PGiBCD: PG update for both \(A \) and \(S \).
 - FWiBCD: FW update for both \(A \) and \(S \).
 - FUMI: The state-of-the-art exact BCD algorithm.

- **Synthetic data experiment:**
 - Settings:
 - \(N = 9 \), \(L = 10^{19} \), \(M = 224 \), \(L_H = 259 \), \(M_H = 6 \).
 - \(A \) is from the USGS digital spectral library.
 - \(S \) is from an abundance map of the AVIRIS Cuprite dataset.
 - **Results:**
 - Average performance over 100 independent trials

Conclusion

- An hybrid inexact BCD scheme was proposed for HSR.
- Computational and convergence issues were dealt.
- Numerical results showed promising runtime performance.

Reference

