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Reinforcement Learning

We aim at maximizing a reward obtained along the dialogue:

by modelling Q-value function:
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Uncertainty Estimates

1. We know how sure the agent is about the action
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Uncertainty Estimates

1. We know how sure the agent is about the action
2. We can introduce clever exploration than epsilon-greedy
3. Choosing next action through Thomson Sampling 
4. Faster learning, better user experience
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Uncertainty Estimates in Neural Networks

● GP SARSA provides an explicit estimate of uncertainty, however,  the 
computational complexity is cubical. 
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Uncertainty Estimates in Neural Networks

● GP SARSA provides an explicit estimate of uncertainty, however,  the 
computational complexity is cubical. 

● Deep neural network models scale nicely with data, but do not provide an 
explicit estimate of uncertainty 

● Uncertainty estimates with NN can be obtained by approximation
● Number of approached explored - 4 casted in the variational inference 

framework 
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Bayes By Backprop

● All weights are represented by probability distributions over possible values given 

observed dialogues

● We use sampling-based variational inference. The intractable posterior is 

approximated with variational posterior:

● Loss to minimize: 
KL( posterior | prior) - log likelihood of data

Sources: 
● Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. "Weight uncertainty in neural 

networks." (2015).
● Lipton, Zachary, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and Li Deng. "BBQ-Networks: Efficient 

Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems."
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Uncertainty Estimates in NN

● Alpha-divergence: The α-divergence measures the similarity between two 
distributions.

● It’s a generalization over KL divergence
● Bayes By Backrop uses KL divergence, equivalent to Alpha-divergence with 

alpha = 0

Source: Hernández-Lobato, José Miguel, Yingzhen Li, Mark Rowland, Daniel Hernández-Lobato, Thang Bui, 
and Richard Eric Turner. "Black-box α-divergence minimization." (2016).
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Uncertainty Estimates in NN

● Dropout: Multiply the weight matrix in a given layer by some random noise.
● Concrete dropout: Continuously relax the dropout’s discrete masks and 

optimize the dropout probability using gradient methods. 

Source: Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from
overfitting”, JMLR 2014 14



Uncertainty Estimates in NN

Bootstrapped DQN: Several neural networks are randomly initialized which 
predict in ensemble uncertainty estimates.

Source: Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. "Deep exploration via 
bootstrapped DQN." In Advances in neural information processing systems, pp. 4026-4034. 2016. 
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Evaluation Setup

● Cambridge restaurant domain: 100 venues, 6 slots, 3 requestable
● Belief state input of size 268 

(last system act, distribution over user intent …)
● System summary action space of size 14 (inform, request, confirm, …)
● User simulator operating on semantic level
● Capable of simulating noise
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Results - Environment without any noise
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Results - Environment with noise
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Conclusion

We train a dialogue agent using reinforcement learning paradigm.

Vanilla Deep‑RL methods proved to be unstable and sample inefficient.
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Conclusion

We train a dialogue agent using reinforcement learning paradigm.

Vanilla Deep‑RL methods proved to be unstable and sample inefficient.

We tested 5 different approaches to introduce uncertainty estimates into 
Deep-RL agent.

BBQN achieves comparable performance to GPSARSA, especially in more noisy 
environments, without the cubic computational complexity.
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