Benchmarking Uncertainty Estimates with Deep Reinforcement Learning for
Dialogue Policy Optimisation



Statistical Dialogue Management Architecture

Distribution of
text hypothesis

Distribution of
semantics

— 3  Speech

Language

Understanding

hypothesis

—>

" —>
Recognition
Speech :
Synthesis
Text

Language
Generation

S

Actions

Dialogue

N
.

Knowledge

Manager

Dialogue System

Base

~N_



No Belief State Tracking

turn observations belief states actions




Reinforcement Learning
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Reinforcement Learning

We aim at maximizing a reward obtained along the dialogue:
T
_ t
R = E YTy
n=1

by modelling Q-value function:
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Uncertainty Estimates
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Uncertainty Estimates in Neural Networks

® GP SARSA provides an explicit estimate of uncertainty, however, the
computational complexity is cubical.
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Uncertainty Estimates in Neural Networks

® GP SARSA provides an explicit estimate of uncertainty, however, the
computational complexity is cubical.

e Deep neural network models scale nicely with data, but do not provide an
explicit estimate of uncertainty

® Uncertainty estimates with NN can be obtained by approximation

e Number of approached explored - 4 casted in the variational inference
framework
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Bayes By Backprop

e All weights are represented by probability distributions over possible values given
observed dialogues

® We use sampling-based variational inference. The intractable posterior is
approximated with variational posterior:

e Loss to minimize:
KL( posterior | prior) - log likelihood of data
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Uncertainty Estimates in NN

e Alpha-divergence: The a-divergence measures the similarity between two
distributions.

e It's a generalization over KL divergence

® Bayes By Backrop uses KL divergence, equivalent to Alpha-divergence with
alpha=0

13



Uncertainty Estimates in NN

e Dropout: Multiply the weight matrix in a given layer by some random noise.
e Concrete dropout: Continuously relax the dropout’s discrete masks and
optimize the dropout probability using gradient methods.

a) Standard Neural Net (b) After applying dropout.
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Uncertainty Estimates in NN

Bootstrapped DQN: Several neural networks are randomly initialized which
predict in ensemble uncertainty estimates.

Belief

State

Source: Osband, lan, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. "Deep exploration via

bootstrapped DQN." In Advances in neural information processing systems, pp. 4026-4034. 2016.
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Evaluation Setup

e Cambridge restaurant domain: 100 venues, 6 slots, 3 requestable
® Belief state input of size 268
(last system act, distribution over user intent ...)
e System summary action space of size 14 (inform, request, confirm, ...)
e User simulator operating on semantic level
® (Capable of simulating noise
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Results - Environment without any noise
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Results - Environment with noise
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Conclusion
We train a dialogue agent using reinforcement learning paradigm.

Vanilla Deep-RL methods proved to be unstable and sample inefficient.
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Conclusion
We train a dialogue agent using reinforcement learning paradigm.
Vanilla Deep-RL methods proved to be unstable and sample inefficient.

We tested 5 different approaches to introduce uncertainty estimates into
Deep-RL agent.

BBQN achieves comparable performance to GPSARSA, especially in more noisy
environments, without the cubic computational complexity.
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