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Setting: To find a robust representations from EEG multi-channel time bound
series by using a deep recurrent neural network (RNN) and predict the levels of
cognitive load from EEG recordings.

Goal: Accuracy and efficiency.
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Data Recording and Preprocessing

» 25 subjects (ten female) of age 16-28 perform the standard working memory (WM) experiment.

= An array of English character in SET Is shown for 0.5 seconds. After 4 seconds the TEST characters are shown.
* |n each trial the number of characters are chosen from the set {4, 6, 8, 10} and repeat experiment for 320 times.
= Each of the task condition containing 4, 6, 8, 10 characters is labeled with cognitive loads 1- 4 respectively.

* Brain activity recorded during 4.5 secs trial and recognized as mental workload.

= Each trial of 4.5 sec are sliced into 0.5 sec pieces through an offline windowing process.

= An image is constructed over each time slice and produced nine frames per trail.

EEG Features

Power spectra for each time sliced window (0.5 sec) Is estimated by applying FFT.

Frequency spectrum divided into 3 sub-bands: theta (4-7Hz), alpha (8-13Hz), beta (13-30 Hz) for EEG analysis.
Mean spectral power within 3 sub-bands are calculated by averaging FFT magnitudes and considered as feature.
Finally 192 features (64 channels x 3 bands) are combined to form a feature vector.

Scalp electrode locations are projected from 3D-2D surface and transformed spatially distributed activity as frames.
Azimuthal Equidistant (Polar) Projection technique used to preserve relative distance between electrodes.

Clough technigue applied to interpolate power over scalp and estimate intermediate values over a 32x32 mesh.

Our contribution: -
2D Projections

m  Problem: EEG recording is highly susceptible to various
sources of noise and to inter subject differences.

m  Approach: Introduce Bidirectional LSTM for EEG analysis and
compare with other state-of-the-art CNN+LST models.

m Different: Learns robust representations from EEG video
sequences using a CNN and BILSTM hybrid network.

m  Our approach preserves the spatial, spectral, and temporal
structures and extracts features which are less sensitive to
variations along each dimension.

m  Plus: Significant gains in efficiency.

m Find better classification accuracy i.e. up to 92.5%
over various existing LSTM models
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Framework overview: (1) EEG signals from multiple cortex locations (ii) FFT and topographical maps (lii)
Spectral maps combined to form 3 channel images, (iv) CNN (ConvNet) FV and LSTM for representation
learning (v) Softmax classification.
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les space and frequency
variations, and learns 2D representations.

= CNN output feature vectors are fed into
recurrent LSTM layers to learn temporal
variations.

» LSTM frames propagated to FC layer and
prediction is made by Softmax classifiers.

» Bidirectional LSTM process the EEG data
In both forward and backward directions |*®
using two separate hidden layers and .
access long frames in both directions.

= Three different combination of LSTM | =

models are explored for experiment.

Forward inputs X = {x1..
hidden vector h = {h;..
-~ by iterating from time t=1to T.

: (th X Xt + Whh X ht—l + bh)

y =1y

he =

Classification Algorithm
RNN receives sequence of CNN activations.

X7}, compute
.h7} and output vector

computed by a set of equations
with components input, forget, cell
activation and output gates

Y =

Why X ht + by

Trained by optimizing the cross entropy cost
function using SGD and backpropagation.
Compare results w.r.t. commonly used
classifiers: Random Forest (RF), Support
Vector Machines and Logistic Regression.
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Dn‘ferent LSTM (L) models W|th ConvNet (C), BILSTM (Ll, L2); FC: Fully Connected; SM: Softmax
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Experiments

Architecture

Test Errors (%)

Validation Error

Number of Parameters

SVM

14.96

Logistic Regression (L1)

14.45

Random Forest

12.23

ConvNet + LSTM

9.87

6.13

1.29 Mi

ConvNet+ LSTM+1D-Conv

8.34

8.32

147 Mi

ConvNet + Bidirectional LSTM

1.61

8.11

1.66 Mi

Classification Results of Different Arc

nitectures

Test Subjects

S1

S2 (S3 |54

S5 |S6 |S7 |S8

S9 |S10 |S11

LSTM

88.45

71.27 |193.22 |97.43

98.2 |81.1 (945 |93

86 |85.25 |87.4

LSTM + 1D Conv

89.9

753 (925 |96.4

95.4 (945 |96.4 |95.8

91.8 [93.45 (90.5

BiLSTM

94.5

86.5 [96.8 |98.5

97.3 |95.3 |99.25 |97.7

99.5 [97.5 (945

Test Subjects

$12

S13 (S14 |S15

S16 |S17 |(S18 |S19

S20 |S21 |S22

LSTM

80.5

46.7 |81.45 |92.53

89.3 |100 |914 (90.5

82.4 (80.5 |47.5

LSTM + 1D Conv

81.7

50.62 |92.5 |87

96.5 (100 [93.5 |95

87.2 |81.65 |51.4

BiLSTM (Mix)

89.8

785 |95.2 |92.5

98.45 |97.3 |94.34 |96.34

754 |88.6 |713

Average Accuracy (%):

BiLSTM (Mix) = 92.5

LSTM + 1D Conv = 87.68

LSTM =84.48

Classification Accuracy

Results for Subjects Fold

Results

= Accuracies on individual
subjects show that our three
models achieved consistent
Improvement on classification
except at S3, S4, S5, S6, S15,
S20.

= Classification errors lowered
significantly when temporal
LSTM models are added.

= Cognitive memory load
prediction across four different
levels with a better accuracy of
92.5% during the memory task
execution.

= Reduce classification error to
7.61% In comparison to other
state-of-art techniques.

Concluding Comments

We defined a methodology to learn spatial,
spectral and temporal representations from
EEG datasets and demonstrated its
advantages in context of cognitive memory load

In future, we would like to experiment on the
unsupervised generative frameworks with large
number of unlabeled task-specific datasets.
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