OPTIMAL ONLINE CYBERBULLYING DETECTION

Daphnē–Stavroula Zois, Angeliki Kapodistria, Mengfan Yao and Charalampos Chelmis
Electrical and Computer Engineering Department, Computer Science Department
University at Albany, SUNY, Albany, NY 12222, USA
{dzois, akapodistria, myao, cchelmis}@albany.edu

Motivation

- Bullying can occur anytime and anywhere
- Consequences are devastating: learning difficulties, psychological suffering, suicide
- Two key practical issues in cyberbullying detection thus far remain unaddressed:
 - Scalability
 - Timeliness

Accurately detect cyberbullying messages using text-based features in a scalable and timely manner!

AvOID: A Novel Algorithm for Optimal Online Cyberbullying Detection

Framework

- Optimal classification strategy H_B or H_N
- Optimal stopping strategy (Continue or Stop?)
- Posterior probability is set to prior probability of bullying message $P(y_0) = p$
- Optimal stopping theory problem for Markov processes

Features

- Type: Features
 - Number of sentiment words
 - Number of word tags
 - Mean value of valence, arousal and dominance respectively

Classification Strategy

- Optimal classification strategy:
 $D^\text{optimal}_R = \arg \min_{R,C} \left[C_R \pi_R + C_N (1- \pi_R) \right]$
- Results to the smallest average cost:
 $J(R) = J(R, D^\text{optimal}_R) = \mathbb{E} \left[\sum_{n=1}^{N} c_n + g(\pi_n) \right]$

Optimal Stopping Strategy

- **Goal**: Use least number of features for detecting a cyberbullying message without loss of accuracy
- Optimal solution via dynamic programming (DP):
 - Cost of stopping $J_n(\pi_n) = \min_{y_{n+1}} \left[g(\pi_n, y_{n+1}) + \sum_{i=1}^{N} A_i(y_{n+1}) \times \right.$
 - Cost of continuing $J_{n+1}(\pi_n) = \frac{p(y_{n+1}|H_B)\pi_n}{A_n(y_{n+1})}$

Conclusions

- *Related Work*
 - Prior work:
 - Focuses on only classification performance
 - Decision is made using all features
 - In contrast, our framework:
 - Focuses on both classification performance and timeliness
 - Decision is made using optimal subset of features
 - Reduced time to reach a decision without sacrificing classification performance

- *Numerical Results*
 - Real-world labeled Twitter dataset consisting of 10,600 tweets
 - Performance: Error? Number of features?

- *Optimal Algorithm*
 - Proposed novel algorithm for cyberbullying detection
 - Optimal classification strategy (optimize classification performance)
 - Optimal stopping strategy (minimize time to raise an alert)

- *Numerical Results*
 - Achieves same error probability by using approximately 4 out of 11 features on average
 - In most cases, 3 – 4 features needed for classification