On Sequential Random Distortion Testing of Non-Stationary Processes

Prashant Khanduri†, Dominique Pastor‡, Vinod Sharma* and Pramod K. Varshney†

†EECS department, Syracuse University, Syracuse, NY, USA
‡IMT Atlantique, Lab-STICCC, Univ. Bretagne Loire, Brest, France
*ECE department, IISc, Bangalore, India

1This work was supported by ARO grant W911NF-14-1-0339.
Outline

- Standard hypothesis testing vs Sequential testing
- Random Distortion Testing (RDT), Block-RDT
- A new framework: SeqRDT
 - Contributions
 - Model
 - Analysis
 - Simulations
- Summary and future work
Hypothesis Testing

To accept or reject the null hypothesis: \mathcal{H}_0 vs \mathcal{H}_1

► **Standard Testing:** Collect a fixed number of samples
 - Bayesian, Min-max or Neyman-Pearson hypothesis testing
 - Procedures are designed to minimize some cost

► **Sequential Testing ⇒ Goal:** To make a decision faster on an average with sufficient performance guarantees
 1. Accept null hypothesis and stop the test
 2. Reject null hypothesis and stop the test
 3. Make no decision and collect another observation

► Continue taking observations unless a confident decision can be made
Sequential Testing: SPRT

► When to stop the sequential test?
► **Answer:** When the probability of false alarm and the probability of missed detection are under certain pre-specified levels (α and β resp.)

Standard Likelihood ratio test (LRT)

► Consider the two hypotheses as \mathcal{H}_0 and \mathcal{H}_1
► Consider the observations $\{Y_n\}$ for $n \in \mathbb{N}$
► The LRT yields

$$\Lambda_n(Y_1, \ldots, Y_n) = \log \frac{p_{Y_1, \ldots, Y_n(Y_1, \ldots, Y_n; \mathcal{H}_1)}}{p_{Y_1, \ldots, Y_n(Y_1, \ldots, Y_n; \mathcal{H}_0)}} \overset{\mathcal{H}_1}{\gtrless} \lambda$$

where, λ is the threshold chosen according to the type of test
Sequential Probability Ratio Test (SPRT)

SPRT has the following form:

- If $\Lambda_n \geq \lambda_H$, decide \mathcal{H}_1
- If $\Lambda_n \leq \lambda_L$, decide \mathcal{H}_0
- If $\lambda_L < \Lambda_n < \lambda_H$, take another observation to obtain Λ_{n+1}
- Repeat

The thresholds $\lambda_L = \log \frac{\beta}{1-\alpha}$ and $\lambda_H = \log \frac{1-\beta}{\alpha}$

- The probability of false alarm and missed detection stay under the specified levels α and β respectively

- SPRT is optimal
Random Distortion Testing (RDT)2

- Binary hypothesis testing problem
- Tests whether a signal lies within a ball of radius τ

Block formulation of RDT: \textbf{Block-RDT}3

- Tests whether the signal mean lies within a ball of radius τ

Figure 1: RDT.

Figure 2: Block RDT.

2Pastor et al., IEEE TSP, 2013.

3Pastor et al., ICASSP, 2015.
Goal

► **Standard sequential testing approaches**
 - Based on LRT: Requires the knowledge of signal distributions
 - Assume the observation samples to be i.i.d.
 - Prone to model mismatch errors and hence are not robust

► **Advantages of RDT:**
 - The distributions of signal under each hypothesis is unknown
 - Samples need not be i.i.d.
 - Is robust to model mismatches

► **Question:**
 - Can we provide sufficient performance guarantees for the sequential testing framework?
Major Contributions

► **A new sequential testing framework:** *SeqRDT*
 - Makes a decision faster compared to Block RDT
 - Analysis of the proposed algorithm
 - Preliminary approaches\(^4,5\)

► **Advantages**
 - Non-parametric sequential mean testing framework
 - Is capable of testing non-i.i.d. signals with unknown sample distributions
 - Robust to model mismatches

\(^4\) Nguyen et al., PhD Dissertation, Telecom Bretagne, 2012
Idea: Associate with each hypothesis a criterion

Proposed in the form of Random distortion testing (RDT)6 and BlockRDT7

\[Y = S + X \]

\[S = (S_n)_{n \in \mathbb{N}}, \]

\[X_1, X_2, \ldots \overset{iid}{\sim} F, \text{ } F \text{ unknown.} \]

\[\mathbb{E} [X_1] = 0 \text{ and } \text{Var}(X_1) = 1 \]

\[S \text{ and } X \text{ are independent.} \]

\[\exists N_0 \in \mathbb{N}, \begin{cases} H_0 : \forall N \geq N_0, 0 \leq |\tilde{S}_N - \xi_0| \leq \tau(a-s) \\ H_1 : \forall N \geq N_0, \tau < |\tilde{S}_N - \xi_0| \leq \tau_H(a-s) \end{cases} \]

where, \(\tau \in [0, \infty) \).

6Pastor et al., IEEE TSP, 2013.
7Pastor et al., ICASSP, 2015.
Model: Intuition

Figure 3: Testing model for SeqRDT
Assumption

Assumption 1: [(a-s) convergence of \bar{S}_N]

$\exists S_\infty$ such that $\lim_{N \to \infty} \bar{S}_N = S_\infty$ (a-s)

for which exist $\tau^- \in [0, \tau)$ and $\tau^+ \in (\tau, \infty)$ such that:

\[
\begin{cases}
 \text{Under } \mathcal{H}_0 : & |S_\infty - \xi_0| \leq \tau^- (a-s), \\
 \text{Under } \mathcal{H}_1 : & |S_\infty - \xi_0| \geq \tau^+ (a-s),
\end{cases}
\]

Remark: Note that the two tolerances τ^- and τ^+ ensure that the non-parametric criterion $|\bar{S}_N - \xi_0|$ converges away from the tolerance τ as the number of samples N grows.
The stopping time T for the test is defined as

$$T = \min \left\{ N \in \mathbb{N} : \mathcal{D}_M(N) \neq \infty \right\},$$

with:

$$
\begin{cases}
\mathcal{D}_M(1) = \mathcal{D}_M(2) = \ldots = \mathcal{D}_M(M) = \infty, \\
\text{for } N > M, \mathcal{D}_M(N) = \\
0 \text{ if } |\bar{Y}_N - \xi_0| \leq \lambda_L(N), \\
\infty \text{ if } \lambda_L(N) < |\bar{Y}_N - \xi_0| \leq \lambda_H(N), \\
1 \text{ if } |\bar{Y}_N - \xi_0| > \lambda_H(N).
\end{cases}
$$

where, $\lambda_L(N) \leq \lambda_H(N)$.

- **False Alarm:** $\mathbb{P}_{FA}(\mathcal{D}_M) \overset{\text{def}}{=} \mathbb{P}[\mathcal{D}_M(T) = 1]$ under \mathcal{H}_0

- **Missed Detection:** $\mathbb{P}_{MD}(\mathcal{D}_M) \overset{\text{def}}{=} \mathbb{P}[\mathcal{D}_M(T) = 0]$ under \mathcal{H}_1

Design thresholds such that: $\mathbb{P}_{FA}(\mathcal{D}_M) \leq \alpha$ and $\mathbb{P}_{MD}(\mathcal{D}_M) \leq \beta$
Choose:

\[\lambda_H(N) = \lambda_\alpha(\tau \sqrt{N})/\sqrt{N} \quad \text{and} \quad \lambda_L(N) = \lambda_{1-\beta}(\tau \sqrt{N})/\sqrt{N} \]

where, given \(\gamma \in (0, 1) \) and \(\rho \in [0, \infty) \), \(\lambda_\gamma(\rho) \) satisfies

\[Q_{1/2}(\rho, \lambda_\gamma(\rho)) = \gamma. \]

Proposition

For \(\alpha, \beta \in (0, 1/2), \ \tau \in (0, \infty) \) and the thresholds \(\lambda_H(N) \) and \(\lambda_L(N) \) we have, \(\lambda_L(N) \leq \lambda_H(N) \), for all \(N \in \mathbb{N} \).

▶ Can this choice of thresholds give some performance guarantees?
Behaviour of $\lambda_L(N)$ and $\lambda_H(N)$

Figure 4: $\lambda_L(N)$ and $\lambda_H(N)$ vs N for $\alpha = \beta = 0.1$ and $\tau = 2$.
Theorem

Theorem (Asymptotics: T, $\mathbb{P}_{FA}(D_M)$ and $\mathbb{P}_{MD}(D_M)$)

For $\alpha, \beta \in (0, \frac{1}{2})$ and thresholds $\lambda_L(N)$ and $\lambda_H(N)$,

(i) we have

$$\mathbb{P}[T = \infty] = 0 \text{ under } \mathcal{H}_0 \text{ and } \mathcal{H}_1,$$

(ii) and as $M \to \infty$, we have

$$\lim_{M \to \infty} \mathbb{P}_{FA}(D_M) = \lim_{M \to \infty} \mathbb{P}_{MD}(D_M) = 0$$
Experimental Results and Discussion

- Signal: \(S_n = \xi_i + \Delta_n \) under \(\mathcal{H}_i \) for \(i \in \{0, 1\} \)
- \(\Delta_n \): Distortions with unknown distribution

Under \(\mathcal{H}_0 \): \(S = \xi_0 + \Delta_n \)
Under \(\mathcal{H}_1 \): \(S = \xi_1 + \Delta_n \)

The above inequalities imply the following

\[
\begin{cases}
\text{under } \mathcal{H}_0 : & 0 \leq |\tilde{S}_N - \xi_0| \leq \tau^- < \tau, \forall N \geq 1, \\
\text{under } \mathcal{H}_1 : & \tau < \tau^+ \leq |\tilde{S}_N - \xi_0| \leq \tau_H, \forall N \geq 1.
\end{cases}
\]
Simulations

Table 1: Seq-RDT vs BlockRDT and SPRT for unbounded regime.
Summary: SeqRDT

- A robust sequential algorithm for hypothesis testing
- Underlying distributions are unknown
- No i.i.d assumptions are made over the signals

Ongoing and Future Work
- Truncated version of SeqRDT: T-SeqRDT
- Distributed version of SeqRDT: D-SeqRDT
- Generalization to higher dimensional signals