UNIVERSITY OF MINNESOTA

ABSTRACT

In this paper, we examine the problem of locating vector outliers from a large
number of inliers, with a particular focus on the case where the outliers are
represented in a known basis or dictionary. Using a convex demixing formula-
tion, we provide provable guarantees for exact recovery of the space spanned
by the inliers and the supports of the outlier columns, even when the rank of

inliers is high and the number of outliers is a constant proportion of total ob-
servations. Comprehensive numerical experiments on both synthetic and real
datasets demonstrate the efficiency of our proposed method.

MOTIVATION

Data Model

Our particular focus here is on identifying anomalous regions in images. In some
applications, information of the anomalous part is known. More specifically,
suppose we observe a data matrix M € R™1%"™2 which we assume admits a
decomposition of the form:

M~ L + DC, (1)

where D € R"1%% js a known dictionary, L. € R"™1%"2 js unknown, with
rank(L) = r, C € R%*™2 is an unknown but column-wise sparse matrix. We
refer to DC as the anomalous part of the data, and our aim is to detect this.
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There are indeed some cases where the dictionary/basis of the saliency is known
in real-world applications. For example, in hyperspectral imaging data the dic-
tionary can be constructed from the object's class by sampling. The figure
below depicts a general example of salient object detection, using hyperspectral
imaging data collected by ROSIS sensor from [1].

(@) (b) (©)

Given 200 hyperspectral images of size 145 x 145, which can be regarded as a
tensor ) of size 145 x 145 x 200 as in (a).

(1) Extract voxels of ), which are column vectors of size 200 x 1.

(2) Combine column vectors to be a matrix (b) of size 200 x 1452, which
we call M matrix

(3) Detect dictionary-based outliers in M, and construct an outlier map (c)

Related Works

Model (1) can be viewed as a generalization of the principal component anal-
ysis (PCA) [4], where the goal is to estimate a low dimensional embedding of
given data, and its robust variants, where the data matrix is contaminated by
sparse outliers [2, 6]. However, existing saliency identification methods (e.g., [3]
and many others) only consider the case when there is no outlier information
available. A closely related model is studied in [6], which detects the saliency
in the case D = I, using a convex formulation termed Outlier Pursuit (OP).
When the subspace spanned by D contains the subspace spanned by L, we
can simply multiply the (pseudo) inverse D' of D on both sides of (1) and
apply OP. However, in general scenario, such an operation results in the loss
of information on L. In addition, the prior knowledge on D enables enhanced
performance of recovery, especially when rank(L) is high.

Idea
Question: How to take advantage of the prior information of the known
dictionary?

Answer: In the classical OP procedure, incorporating the decomposition
of the outlier (DC) — DOP (Dictionary-based Outlier Pursuit)
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OUR APPROACH

Given the data matrix M and the dictionary D, we consider to recover the inlier
space U and the support of the ourlier columns Zc from a noisy observation
via the following optimization procedure, which we call Dictionary based Outlier

Pursuit (DOP),

min L] + A|Cll1,2 st [M—L-DClr < en, (2)

where |[L||. as the nuclear norm of L, [|C|l1,2 = >, [|C. j|[2, C. ; is the j-th

column of C. ;, and A > 0 is a regularization parameter.

ALGORITHM FOR DOP

We adopt an accelerated proximal gradient descent method to solve the out-
lier pursuit problem (2), along the lines of the algorithm proposed in [5].

Algorithm 1. APG (Accelerated Proximal Gradient descent)
solver for (2)

Input: M, R, X\, v, vg, v, and Lf = Amax ([ILR]/[ILR])
Initialize: L[0] = L[—1] =0 x7, C[0] = C[—1] = 0p« T,
t|0] = t[—1] =1, and set k£ = 0.
while not converged do
Ty[k] = L{k] + {55422 (L[k] — L[k — 1))
Tc[k] = C[k] + “57— (C[k] — C[k — 1])
Gr[k] = TLlk] + 7 (M — TL[k] - RTc/[k])
Gclk] = Tclk] + #R’(M — Ty k] — RTc[k])
UZV’ = SVd(GL[ ]), L[k + 1] = USV[k]/Lf (Z)V/
Clk +1] = Suiry/L  (Gelk])
tfk + 1] = [1 + \/4t2[k] + 1} /2
vk 4+ 1] = max{vv|k], v}
k+ k+1

end while
return L[k], C|k]

PRELIMINARIES

Let the compact SVD of L be UXZV?', where rank(L)
:E] EE H§i7’>< 7"’ 1\/r EE Hgi7112 X 7“.

Given a matrix X € R™1%"2 define:

o Py (X)=PyX and Py(X) = XPv, where Py = UU ' and Py =
vv'

Pr(X) = (Pu+Pyv —PuPy)(X)=PuX+ XPyv — PuXPvy

Pc(X) is obtained by keeping the i-th column of X unchanged for
1 € Zc, otherwise setting the i-th column of X to be zero for ¢ & Z¢

Rc is the column space of the dictionary D

Bv = IVV ' |e,2, fuv = DUV || 2

DEFINITIONS

We introduce two definitions:
(al) Two subspaces £ and D are said to satisfy the subspace incoherence

property with parameter u(L, D) if
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(a2) An nj X d matrix D is said to satisfy the restricted frame property on
X € Rc if for any fixed x € R,

2 2 2
O‘ZHXHQ < ||DX||2 < au”XHQa (4)

where «, and «; are upper and lower bounds respectively with o, >
a; > 0.

MAIN THEOREM

Theorem 1. Suppose M = L + DC + N with (L, C) belonging to the or-
acle model {M,U,Zc}, ||[N||lr < en, rank(L) = r, and |Zc| = k with k
satisfying k < 1/(4/3%,). Suppose subspaces L and D satisfy (3) with param-
eter u(L,D) € [0,1), and D satisfies (4) on Rc with o, > «; > 0, and
C.; € Rc forall j € [n2]. If A\, v and k satisfy

b71 — Tau/L('C’v D)
vk |
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then there exists (L, C) € {M,U,Zc} such that the optimal solution (L, C)
of DOP in (2) satisfies

IL —Ljlr < (8v7 + 9% )en,
IC — Cllr <9Vr(1+ ¥5%)en

Complexity Analysis

Suppose that

(1) 1 < o < ay < 1, which can be easily met by a tight frame when
ni1 > d, or a RIP type condition when n1 < d,

(2) u(£,D) < L and Buy,v < & (satisfied when DC and L has small
coherence),

then the condition above becomes

k=0(—L)and + <<
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EXPERIMENTS - SYNTHETIC DATA

We examine the performance of our approach first on synthetically generated
data, generated as follows:

e For DOP and Inv+OP, we set n7 = 100, no = 1000, d = 50 or 150,
and choose » € {5,10,...,100} and k& € {50,100,...,1000} with
A=0.5ford =50 and A\ = 1.5 for d = 500.

e For each pair of r and k, we generate L = [UVTOn1 wk] € R™1X72
C =1[0,, x(ny—k)W] € R**"2, where U € R"1 %", V € R"2*" and

W € R*** has i.i.d. N(0,1) entries. D € R™1 X4 is generated with
i.i.d. N(0,1) entries and we normalize columns of M = L + DC to be
unit vectors.

e For OP, we generate L € R"1*™2 and C € R™1*™2 in the same way
except that C = DW with d = 50 such that columns of C spans a
50-dimensional subspace of R'%Y.

e The phase transition results with different » and k& for OP, Inv4OP,
and DOP when n; = 100, no = 1000, d = 50 are shown in Figure 1
(a), (b), (c) respectively; The phase transition result for DOP when
n1 = 100, ng = 1000, d = 150 is shown in Figure 1 (d). We perform
50 random trials to record the times of successful recovery (from 0 to
50) of {U,Zc}. We also choose different \'s for each case to find the
best performing setting. Here white regions correspond to all successes
and black regions correspond to all failures.

Competing Algorithms:
(1) Dictionary based Outlier Pursuit (DOP): the proposed dictionary based

outlier detection approach.

(2) Outlier Pursuit (OP): the classical outlier pursuit approach without dic-
tionary information proposed in [6].

(3) Inverse 4+ Outlier Pursuit (Inv4+OP): multiplying the pseudo inverse of

D on both sides of (1) then applying OP
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Figure 1. Phase transitions for (a) OP, (b) Inv+OP, and DOP with (c) d = 50;
(d) d = 150.

ROBUST PCA VIA DICTIONARY BASED OUTLIER PURSUIT

EXPERIMENTS — REAL DATA

We also applied our approach to real hyperspectral image data:

e The raw data is a 3-way tensor Y € R**™>*% where w is the number

of frequency bands, and s and m are the 2-D image dimensions.

For Indian Pines collected by AVIRIS sensor [1]: s = m = 145
and w = 200; for Pavia University collected by ROSIS sensor
(http://www.ehu.eus/ccwintco/): s = m = 131 and w = 201.

The data matrix M € R¥**™ is formed by unfolding the tensor data
Y along the third dimension, where each column of M is the voxel of
Y. This corresponds to, e.g., n1 = 200 and no = 1452 = 21,025 for
Indian Pines. The recover results are shown in Figure 2.

The ROC metrics, i.e., true positive rate (TPR), false positive rate
(FPR), and area under curve (AUC), for all approaches are also pre-
sented in Table 1 when we choose different sizes of dictionaries (column
numbers d=4, d=15).

(g) GT - i Inv4+OP - DOP

Figure 2. Demonstration of (a) a slice of Indian Pines HS data array (with
w = 50) and (f) a slice of Pavia University HS data array (with w = 100). (b,
g) are the ground truth, (c, h) are detection results of OP, (d, i) Inv + OP, and
(e, j) DOP for Indian Pines and Pavia University.

d=4 d=15
TPR FPR AUC TPR FPR AUC
DOP 0.989 | 0.012 0.998 | 0.989 | 0.017 | 0.998
Inv + OP 0.926 | 0.033 | 0.980 | 0.903 | 0.005 0.946
OP 0.097 | 0.024 | 0.095 0.097 | 0.024 | 0.095

Approach

Table 1. Comparison of the ROC metrics for different methods.

DISCUSSION

Figure 1: For DOP, even when L has full row rank, we can recover Z~ exactly
for a wide range of k£ (coincides with our theory). For OP, the recovery fails
when rank r is high, even for very small k. Inv4+OP can recover Z¢c for a smaller
range of k when L has full row rank.

Figure 2: DOP and Inv4+OP outperform OP on both real datasets. Moreover,
the real detection result of DOP is better than Inv+OP’s.

Table 1: DOP achieves better ROC metrics which means that the detection
result of DOP is more accurate than the results of Inv+OP and OP.
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