

Motivation

- Certain regions of the audio can be more important than the rest.
- Conventional approaches (i-vector and x-vector) ignore the sequence information.
- Previous end-to-end approaches work well only on short durations (3 sec) [1].

Proposed HGRU Model

- Hierarchically builds a sequence of 1 sec representations.
- Attention module computes a weighted average of this sequence to output utterance level embedding.
- Duration dependent fully connected layers compute posteriors from the embedding.

Figure 2: Attention Module

End-to-End Language Recognition Using Attention Based **Hierarchical Gated Recurrent Unit Models** Bharat Padi¹, Anand Mohan², Sriram Ganapathy²

¹minds.ai, Bengaluru

²LEAP Lab, Department of Electrical Engineering, Indian Institute of Science, Bengaluru

Experiments

Cluster	Target Languages	Hours	 Experime 	ents perform	ed on LRE2	2017 dataset
Arabic	Egyptian Arabic (ara-arz)	190.9	 it includes 5 major language clusters with 14 target dialects. Table below shows results on clean evaluation data in terms of accuracy in % (and Cavg in 			
	Iraqi Arabic (ara-acm)	130.8				
	Levantine Arabic (ara-apc)	440.7				
	Maghrebi Arabic (ara-ary)	81.8				
Chinese	Mandarin (zho-cmn)	379.4				
	Min Nan (zho-nan)	13.3				
English	British English (eng-gbr)	4.8	parenthesis).			
	General American English (eng-usg)	327.7				
Slavic	Polish (qsl-pol)	59.3	Dur. (sec)	ivec [2]	LSTM [1]	HGRU
	Russian (qsl-rus)	69.5	3	53.8 (0.53)	54.7 (0.55)	55.1 (0.55)
Iberian	Caribbean Spanish (spa-car)	166.3	10	72.3 (0.27)	72.1 (0.35)	74.1 (0.32)
	European Spanish (spa-eur)	24.7	30	,	76.1 (0.28)	· · · · ·
	Latin American Continental Spanish (spa-lac)	175.9				· · · ·
	Brazilian Portuguese (por-brz)	4.1	1000	. ,	42.8 (0.79)	× ,
			overall	67.9 (0.37)	64.3 (0.48)	68.5 (0.42)

Table 1: LRE17 training set : target languages, language
 clusters and total number of hours.

Figure 3: Partial noisy (10 sec.) and Multi speaker (3 sec. + 3 sec.) results

- Comparable results when noise levels are high (5 dB and 10 dB SNR).
- Significantly outperforms baseline when the audio has non-stationary characteristics like changing speaker or non-stationary noise levels.

Attention Analysis

- In the transcription, green shade highlights the parts where attention was focused.
- Vocalisations like 'aa', 'umm' were not given importance. Spectrogram

Transcription: 13s - : stutter...

Figure 5: Attention on a clean British English audio file with transcript

 Table 2: Results on clean LRE evaluation data

Figure 4: Noisy (10 sec.) results

- 0-3s : Umm you know...... young guy...
- 3s 5s :ah....umm.... I... 5s - 6s : I was basically..
- 6s 12s : ah.... mugged...umm. ...it did
- 12s 13s : take a lot off me....

Figure 6: Attention weights of a partially noised audio file

Computational Complexity

	ivec [2]	LSTM [1]	HGRU
CPU	12	51	8
GPU	12	11.5	1.5

Table 3: Approximate computational time in
 seconds for ten 30sec eval files using a single CPU.

Summary

- tion systems [1].
- Robust to the presence of noise as well as in non-stationary conditions like partially corrupted speech data or multi-talker speech segments.
- The attention mechanism plays the role of relevance weighting.
- Low relative computational complexity.

Acknowledgements

- **ICASSP** conference travel.

References

- Les Sables dÓlonne, France, June 2018.

- Noise (10 dB SNR) was added to the first 5 sec of the utterance to simulate nonstationary noisy environment.
- No preprocessing with speech activity detector
- HGRU was able to redistribute it's attention weights.
- Attention weights reduced in the noisy regions while an increase in strength is observed in the cleaner regions.

- Architecture of HGRU allows for parallel computation unlike LSTM.
- Noticeable improvement in the computational complexity achieved at comparable or improved LID performance.
- Machine Specification: 32 CPU, 8 core, 2 thread Intel x86-64 machine with 16 GB Nvidia Quadro P5000 GPU.

• Significantly improves over the previous attempts for end-to-end LSTM based language recogni-

• This work was funded partly by grants from the Department of Science and Technology (DST) Early Career Award (ECR01341) and the Pratiksha Young Investigator Award.

• We thank the Tata Trust, Indian Institute of Science, for the generous funding in support of

[1] Ruben Zazo, Alicia Lozano-Diez, and Joaquin Gonzalez-Rodriguez. Evaluation of an LSTM-RNN system in different nist language recognition frameworks. In Proc. of Odyssey 2016 Speaker and Language Recognition Workshop. ATVS-UAM, June 2016.

[2] Seyed Omid Sadjadi et al. The 2017 NIST language recognition evaluation. In Proc. Odyssey,