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e Certain regions of the audio can be more important than the rest. , 1.0
e Experiments performed on LRE2017 dataset, | . .
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e Conventional approaches (i-vector and x-vector) ignore the sequence information. Egyptian Arabic (ara-arz) 190.9 it includes 5 major language clusters with 14 0.0 . 0 | 10.0
. _ Arabi Iraqi Arabic (ara-acm) 130.8 target dialects. Time(s) tector.
e Previous end-to-end approaches work well only on short durations (3 sec) [1]. "aBIC | evantine Arabic (ara-apc) 440.7 | o Attention Weights for the HGRU Model e HGRU was able to redistribute it’s atten-
Maghrebi Arabic (ara-ary) 81.8 e Table below shows results on clean evaluation o — Noisy Audio " iaht
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Slavic  Polish (sl-pol) 59.3 Dur. (sec)| ivec[2] | LSTM[1] HGRU . | | | | served in the cleaner regions.
e Hierarchically builds a sequence of 1 sec representations. Russian (gsl-rus) 69.5 3 53.8 (0.53) 1 54.7(0.55) 55.1 (0.59) >0 &0 Y imete) >0 H0:0
Caribbean Spanish (spa-car) 166.3 10 72.3 (0.27)72.1 (0.35) | 74.1 (0.32)
e Attention module computes a weighted average of this sequence to output utterance level em- berian  CUroPean Spanish (spa-eur) 24.71 30 83.0 (0.13) | 76.1 (0.28) 83.0 (0.23) Figure 6: Attention weights of a partially noised audio file
. Latin American Continental Spanish (spa-lac) 175.9
bedding. Brazilian Portuguese (por-brz) 41 1000 |56.2 (0.54) 42.8 (0.79)|53.5 (0.62)
overall |67.9 (0.37) 64.3 (0.48) 68.5 (0.42)

e Duration dependent fully connected layers compute posteriors from the embedding
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Table 1: LRE17 training set : target languages, language
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T : T : e Architecture of HGRU allows for parallel computa-
: 2 : ivec [2]|LSTM [1] HGRU tion unlike LSTM.
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b I I, 100ms GPU.
BiGRU BiGRU |~ | BIGRU 10 107
oo o t—] Level-1
T T T 10ms 0 5 dB 10 dB 15 dB 20dB  Multi-Speaker 0 5 dB 10 dB -, 15 dB 20 dB
. 2 : Summary
e e e Figure 3: Partial noisy (10 sec.) and Multi speaker (3 sec. Figure 4: Noisy (10 sec.) results
Ta TZQ TZ" + 3 sec.) results e Significantly improves over the previous attempts for end-to-end LSTM based language recogni-
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T T T T T T T T T e Comparable results when noise levels are high (5 dB and 10 dB SNR). e Robust to the presence of noise as well as in non-stationary conditions like partially corrupted
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Output sequence from Level-1 (yi.....ym), 200msec window, 100msec hop ¢ Significantly outperforms baseline when the audio has non-stationary characteristics like
T’” Tyz Tyﬂ,, changing speaker or non-stationary noise levels.

e The attention mechanism plays the role of relevance weighting.

e Low relative computational complexity.
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Input sequence of BN features (x1.....x,), 25msec window,10ms hop
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Figure 5: Attention on a clean British English audio file with transcript




